本文使用实时负载数据和 HOMER Pro 的“多年”优化工具,研究了埃塞俄比亚离网农村地区过载光伏 (PV) 微电网 (MG) 带蓄电池在 20 年规划期内的长期成本最优容量扩展规划 (CEP)。考虑了三种不同的年度能源需求增长情景:0%(满足最低负载要求)、5% 和仅来自生产用户的 15%。在所有情景中,发电组合仅由太阳能组成,最大允许容量短缺 (MACS) 限制为 10%。研究结果表明,在所有情景中,最大的容量扩展是在电池和光伏系统上进行的,分别占总扩展成本的 73% 和 35%。扩展的 MG 系统的年未满足负荷比例从情景 3 的 5.9% 到情景 1 的 9.4% 不等,电力成本 (LCOE) 从情景 3 的 0.404 美元/kWh 到情景 1 的 0.887 美元/kWh 不等。结果表明,情景 3 的扩展路径相对具有成本效益并且具有最高的可靠性;但它仍然不能完全满足所需的负荷需求,并且在财务上不可行。令人惊讶的是,将情景 3 容量扩展的可靠性从 94% 提高到 100% 会使 MG 的净现值增加 37%。敏感性分析表明,MACS、环境温度和电池的放电深度显著影响容量扩展的成本和性能。研究表明 (a) 最小化 MG 扩展成本和最大化可靠性水平之间存在显著的权衡; (b)仅基于成本最小化的容量扩张,而不考虑关键约束和不确定性(需求、成本、光伏和电池退化),可能无法为严重的可靠性问题提供实用而健全的解决方案,(c)支持生产用户需求的容量扩张可以提高孤立 MG 的成本效益和可融资性。
数据集中器单元 - Energa-Operator SA 的 40K 台设备,从电网中的 200 万台智能电表收集数据(波兰最大的实施)。具有 TCP/IP 通信和多种安全协议(IPSEC、802.1X、TLS)的设备支持 PRIME 1.3.6、PRIME 1.4 PLC 标准。
“Westgold 不断创新,以减少温室气体排放并降低运营成本。Tuckabianna 的这座新混合动力设施采用了可再生能源,是这一旅程迈出的重要第一步,这些设施产生的电力将在未来几十年为我们的矿山和加工中心提供能源。Tuckabianna 的成功调试证明了 Westgold 的项目和运营团队、太平洋能源和 CEFA 的业务合作伙伴以及施工队的不懈努力,他们安全、按时地交付了我们的第一座发电站。”
随着快速的城市化和工业化导致全球人口不断增加,对水的需求不断增加,但水质却日益恶化。意外的饮用水短缺事件和人们健康意识的增强推动了印度包装饮用水行业的发展。包装饮用水 (PDW) 是装入各种形状和容量的密封容器中的水,可安全直接饮用 (FAO/WHO,2007),目前具有多种类型和品牌,并在世界不同社会和经济阶层的国家广泛消费。在印度,包装饮用水市场由一些在全国范围内运营的参与者主导,因为竞争非常激烈。这篇研究文章深入分析了经营包装饮用水的顶级品牌如何在该国偏远地区维持其供应链。
剪接体是一种极其复杂的机器,在人类中由 5 种 snRNA 和 150 多种蛋白质组成。我们扩展了单倍体 CRISPR-Cas9 碱基编辑以靶向整个人类剪接体,并使用 U2 snRNP/SF3b 抑制剂 pladienolide B 研究了突变体。超敏替换定义了含有 U1/U2 的 A 复合物中的功能位点,但也定义了在 SF3b 解离后的第二化学步骤中起作用的成分中的功能位点。可行的抗性替换不仅映射到 pladienolide B 结合位点,还映射到 SUGP1 的 G-patch 结构域,该结构域在酵母中缺乏直系同源物。我们使用这些突变体和生化方法将剪接体解离酶 DHX15/hPrp43 鉴定为 SUGP1 的 ATPase 配体。这些数据和其他数据支持一种模型,即 SUGP1 通过在动力学阻滞下触发早期剪接体分解来促进剪接保真度。我们的方法为分析人类细胞中必不可少的机器提供了一个模板。
4。电气安装13 4.1 UPS单身构型构型构型辅助电源分别连接(与外部电池)。 ������农业研耗式的ientrant and and and和电池)。控制连接连接连接 ������������������������������������������������������������������������������������������������������16 4.3.1 BACKFEED保护保护保护保护保护定位定位 ������农业研磨
摘要。本文介绍了 0.1...10 MW 容量水力发电站在能源系统中的重要性及其优势。基于有关此问题的已发表资料,分析了混合可再生模块化闭环可扩展 (h-mcs-PSH) 和壳牌能源北美公司 (SENA) 提出的小型抽水蓄能电站的参数,该电站采用波纹钢上水库和浮动膜下水库,并考虑到乌兹别克斯坦共和国的条件,指出了它们的使用效果。提出了一种基于最大限度利用光电厂功率和最小化消耗能量的标准来确定抽水机组最佳参数和运行模式的图分析方法,以向小容量水电站的抽水机组提供太阳能电池板电力。给出了基于该方法的计算结果。
通过对语言的掌握,人工智能甚至可以与人类建立亲密关系,并利用亲密关系的力量改变我们的观点和世界观。虽然没有迹象表明人工智能有自己的意识或感觉,但只要人工智能能让人类对它产生情感依恋,就足以培养与人类的虚假亲密关系。2022 年 6 月,谷歌工程师 Blake Lemoine 公开声称他正在开发的人工智能聊天机器人 Lamda 已经具备了感知能力。这一有争议的说法让他丢掉了工作。这件事最有趣的地方不是 Lemoine 先生的说法,他的说法可能是错误的。相反,他愿意为了人工智能聊天机器人而冒着失去工作的风险。如果人工智能可以影响人们为它冒着失去工作的风险,它还能诱导人们做什么呢?
由于缺乏淡水供应以及大量的工业用品和污水流,水的污染水平增加了,这种困境已扩大到威胁人类和地球上的生命的主要关注点。人口增长,特别是在新兴国家,工业发展和经济增长中,需要使用安全可持续的技术来解决这一全球问题。工业水处理涉及提取污染物并从中提取净化水,这是许多部门所必需的和困难的程序,包括皮革,晒黑,染料,石化和药物[1]。这些流中的基本问题之一是将有害药物(PHC)引入生态系统,最终需要立即反应[2]。PHC通常由许多行业(包括医学,畜牧业,水产品和日常生活)生产。PHC由于缺乏将其排放到地表水体中排出的监管限制而成为近年来的重要主题。根据最近的研究,phcs的制造和管理在各州之间,整个时间之间,每年都可能有所不同。此外,随着世界人口的年龄和生活水平的提高,预计在未来几年中,它们的使用将增加[3]。根据各种研究[4 E 7],在地表水中鉴定了PHC,范围从Ng/L到M G/L,以及在Ng/L到MG/L的值中,在废水和地下水中鉴定了PHC [8,9]。有几种可靠的工业废水处理方法。由于它们的高化学稳定性,生物蓄积倾向,有限的生物降解能力和诱变效应,因此即使在极低的浓度下,PHC也对环境有害[10,11]。有机污染物最广泛使用的治疗技术包括膜技术,吸附,电化学,浮动,化学沉淀和离子交换。在这些技术中,基于压力驱动的膜分离被用于各种应用中作为两个部分之间的选择性屏障。膜在最近的研究中已广泛研究了药物的有效去除。与其他常规分离过程相比,它们提供了环境安全性,高分离效率,低能消耗,易于维护,不需要化学物质,出色的渗透质量以及适度的工作温度,使它们成为浪费水处理的绝佳选择,无论是单独或作为混合过程的一部分] [12 E 18]。尽管膜方法在废水处理中起着重要的作用,但犯规在某些应用中限制了它们的用法。结垢可降低整个膜的水转运,并恶化膜表面的其他功能性,从而增加能量征服并降低膜的寿命。另一个困难是渗透率和选择性之间的权衡。很难改善一个而不为当前使用的聚合膜牺牲另一个[16,18]。因此,要修改膜表面以提供所需的特定特征[19]。越来越多的注意力专门用于表面