2. Tang, Durak, Ling(CQT 新加坡),OE 24, 22004(2016)。 3. Yang, Taschilina, Moiseev, Simon, Lvovsky(卡尔加里),Optica 3, 1148(2016)。 4. Pa ́ur、Stoklasa、Hradil、S ́anchez-Soto、Rehacek(帕拉茨基/马德里/马克斯·普朗克),Optica 3,1144(2016)。 5. Parniak 等人(华沙),PRL 121,250503(2018)。 6. Donohue 等人(帕德博恩),PRL 121,090501(2018)。 7.Paur 等人(帕拉茨基/马德里/马克斯·普朗克/ESA),Optica 5,1177(2018)。 8. J. Hassett 等人(罗切斯特),FiO/LS,JW4A.124(2018)。 9. 周等(罗切斯特),Optica 6,534(2019)。 10.Paur 等人,OL 44,3114(2019年)。 11. Wadood 等人,(罗切斯特)Fio/LS,FM3C.7(2019)。 12. Rehacek 等人,PRL 123,193601(2019)。 13. Salit 等人(霍尼韦尔),AO 59,5319(2020 年)。 14. 张等(史蒂文斯),OL 45,4968(2020)。 15.Boucher 等人(Castler Brossell),Optica 7,1621(2020)。 16. Ansari 等人(帕德博恩),PRXQ 2,010301(2020)。 17. Brecht 等人(帕德博恩),OSA Quantum 2.0,QW6A.17(2020)。 18. Wadood 等人,光学快报29,22034(2021)。 19. Mouradian 等人。 (伯克利),PRA 103,032419(2021)。 20.De 等人。 (帕德博恩),PRR 3,033082(2021)。 21. Santra 等人(爱荷华州立大学),JPCB 125,3092(2021)。 22. Pushkina 等人(牛津),PRL 127,253602(2021)。 23. Mazelanik 等人(华沙),arXiv:2106.04450(2021 年)。
1. M. Tsang、R. Nair 和 X.-M.卢,物理修订版 X 6, 031033 (2016)。 2. W.-K. Tham, H. Ferretti 和 A. M. Steinberg,Phys. Rev. Lett. 118, 070801 (2017)。 3. M. Paúr、B. Stoklasa、Z. Hradil、LL Sánchez-Soto 和 J. Rehacek,Optica 3, 1144 (2016)。 4. F. Yang, A. Tashchilina, E. S. Moiseev, C. Simon 和 A. I. Lvovsky, Optica 3, 1148 (2016)。
Key to Conference Abbreviations B = Bragg Gratings, Photosensitivity and Poling in Optical Materials and Waveguides (BGPP) I = Integrated Photonics Research, Silicon and Nanophotonics (IPR) Ne = Photonic Networks and Devices (NETWORKS) No = Novel Optical Materials and Applications (NOMA) Np = Nonlinear Photonics (NP) S = Solar Energy and Light Emitting Devices (SOLED) So =特种光纤(SOF)SP =光子通信中的信号处理(SPPCOM)J =关节编程
[Dominik,Johanna等。“用于100 MJ类的薄磁盘多通放大器,多kW高强度激光器。”高强度激光器和高场现象。Optica Publishing Group,2022]
后期:Bilal M.,Lopez-Aguayo S.,Szczerska M.,Madni H.,使用等离子体材料和磁性流体基于光子晶体纤维的多功能传感器,OSA Continuum vol。61,ISS。 35(2022),pp。 10400-10407,doi:10.1364/optcon.456519©2022 Optica Publishing Group。 只能为个人使用而制作一张或电子副本。 系统的复制和分布,本文中的任何材料的复制,以收费或出于商业目的或本文内容的修改。61,ISS。35(2022),pp。10400-10407,doi:10.1364/optcon.456519©2022 Optica Publishing Group。只能为个人使用而制作一张或电子副本。系统的复制和分布,本文中的任何材料的复制,以收费或出于商业目的或本文内容的修改。
S.Mondal 博士是印度浦那国防先进技术学院应用物理系的助理教授。他的广泛研究领域是高电场 THz 的产生和检测、超快光纤和固态激光振荡器和放大器的开发、非线性光学及其应用。他于 2015 年在印度理工学院 Kharagpur 分校获得博士学位,专业是“超快激光器和非线性光学”。他曾在英国 STFC-Daresbury 实验室担任卢瑟福国际研究员一年零九个月,并在捷克共和国布拉格光子学和电子学研究所担任博士后研究员一年零五个月。他发表了 40 多篇同行评审文章和三个书籍章节。他是 Elsevier、Optica、Wiley 等的定期审稿人,也是 OSI、ILA 的终身会员和 OPTICA 的青年科学家会员。
具有轨道角动量(OAM)的电磁波是用于光学通信,量子技术和光学镊子应用的强大工具。最近,它们引起了人们日益增长的兴趣,因为可以利用它们在手性分子培养基和磁性纳米结构中检测特殊的螺旋二分性效应。在这项工作中,我们使用螺旋区域板上产生的不同拓扑充值订单的极端紫外线OAM光束在种子自由电子激光器的纳米结构对象上进行单次射击。通过控制ℓ,我们演示了如何改善约30%的inimageresolutionWitheStocontocontocontocontoContocontoContoconalGaussianBeamiltion.lissultExtendSendSthecabababapabableftersiqualsthecapablextendSthecapibilitys of ThisextendSthecapibilitys of Cooherent decraction diffraction Techniques of Cooherent diffraction Techniques,并逐步实现较大的级别范围(以下较高的时间范围)(下面是更高的范围)。©2024 Optica Publishing Group根据Optica Open Access Publishing的条款
轻,无质量,没有阴影;在普通情况下,光子彼此彼此之间的经历。在这里,我们演示了一个像物体一样起作用的激光束 - 当光束被另一个光源照亮时,光束会在表面上施放阴影。我们观察到一个常规的阴影,从肉眼可以看出,它遵循其落在表面的轮廓上,并遵循物体的位置和形状(激光束)。特别是,我们使用涉及四个原子水平的非线性光学过程。我们能够通过施加另一个垂直激光束来控制透射激光束的强度。我们通过实验测量阴影对激光束功率的对比度的依赖性,最多发现约22%,类似于阳光明媚的一天的树阴影。我们提供了一个理论模型,可以预测阴影的对比。这项工作为制造,成像和照明开辟了新的可能性。©2024 Optica Publishing Group根据Optica Open Access Publishing协议的条款
通过单根光纤或网络(无光隔离器或光放大器)进行光信号的双向传输,相当于通过双绞线或同轴电缆传输电信号、通过“以太”传输无线电信号以及通过空气传输声学信号(声音)。在所有这些情况下,介质都是互易的,即相对于传播方向对称。考虑通过单根光纤进行双向传输而不是“两次单向”传输的主要动机是将基础设施(光纤、光分路器和光放大器)减少两倍,并通过集成收发器设计降低成本。当然,双向传输会给系统设计带来其他成本和额外的复杂性。一种特殊的光纤!组件需要在收发器处“双工”双向信号,并且双向信号之间的串扰应保持较小。