摘要最近,提出了一种基于对问题的持续重新重新制定的新方法来解决基数受限的优化问题。遵循这种方法,我们得出了一个问题的顺序最佳条件,该条件在每个局部最小化器中都可以满足,而无需任何约束资格。我们通过基于圆锥体性属性引入弱的顺序约束资格,将此条件与现有的M型固定概念联系起来。最后,我们提出了两种算法应用程序:我们通过证明它会产生满足上述最佳条件的限制点来改善已知正则化方法的现有结果,即使子问题仅是不固定的。我们表明,在合适的库迪卡 - 豪斯维奇型假设下,直接应用于重新配置的问题的标准(保障)乘数罚款方法的任何限制点也可以满足最佳条件。这些结果比对具有互补性约束的数学研究类别已知的相应结果更强。
图像切解分析检测数字图像中隐藏的数据,对于增强数字安全性至关重要。传统的切解方法通常依赖于大型预先标记的图像数据集,这些数据集很困难且昂贵。为了解决这个问题,本文介绍了一种创新的方法,该方法结合了积极的学习和非政策深度强化学习(DRL),以使用最小标记的数据来改善图像ste缩。主动学习允许模型智能选择应注释哪些未标记的图像,从而减少有效培训所需的标记数据量。传统的主动学习策略通常使用限制灵活性且不能很好地适应动态环境的静态选择方法。为了克服这一点,我们的方法结合了用于战略数据选择的非政策DRL。DRL中的非政策可以提高样本效率,并显着提高学习成果。我们还使用差分进化(DE)算法来微调模型的超参数,从而降低了其对不同设置的敏感性并确保更稳定的结果。我们对广泛的BossBase 1.01和BOWS-2数据集进行了测试,证明了该方法区分未更改和隐形图像的强大能力,在BossBase 1.01和BOSS-2数据集对BossBase 1.01和91.834%的平均F量表达到93.152%。总而言之,这项研究通过采用先进的图像切解分析来检测隐藏数据,从而增强了数字安全性,从而通过最小的标记数据显着提高了检测准确性。
本文介绍了基于MOSFET晶体管的零偏置功率探测器的设计和表征,该晶体管从ST-Microelectronics中集成了SIGE 55 nm BICMOS技术。电路的工作频带位于(38-55)GHz范围内,致力于优化5G设备中的功耗。使用该技术中可用的三个NMO类别(GP,LP,HPA),目的是根据不同的NMOS类别设计多个检测器,以比较其性能。此外,设计了基于6 LP晶体管的堆栈的检测器,以增加动态范围。与最近的工作相比,HPA检测器的性能非常好,噪声等效功率值(NEP)3.8 PW/√和67 dB的大动态范围。这些检测器的提取的电压灵敏度值在(850-1400)v/w之间显示了与仿真结果的良好协议。
摘要 - 电子产品越来越容易受到硅内能量颗粒相互作用的影响。为了在辐射效应下提高电路可靠性,在VLSI系统的设计流中采用了几种硬化技术。本文提出了逻辑门中的PIN分配优化,以减少单个事件瞬态(SET)横截面并提高轨内软率。信号概率传播用于通过重新交换或引脚交换将最低概率分配给电路最敏感的输入组合。细胞优化的软率最高可降低48%。对于分析的算术基准电路,优化的细胞网列在设置的横截面和轨内软校正速率上可以在电路设计区域内无需成本降低8%至28%。另外,由于引脚交换是一种布局友好的技术,因此优化不会影响细胞放置,并且可以与逻辑和物理合成中的其他硬化技术一起采用。
摘要。分布式燃料电池拖拉机是一种新型的动力拖拉机。传输系统和控制策略参数会影响整个机器的能量利用效率。目前在这一领域没有研究。为了解决分布式双运动式氢燃料电池拖拉机的整个机器的低能利用问题,提出了一种合作优化方法,基于粒子群优化(PSO)算法,用于用于传输系统的参数和传输系统和能量的Dual Dual Motor-Motor-Motor-Motor-Motor-Motor-Motor-Motor-Motor-Motor-Motiven viren燃料电池燃料电池燃料燃料燃料燃料电池tractor。根据拖拉机动力学分析和等效氢消耗理论,建立了燃料电池拖拉机传输参数等效氢消耗模型,车轮端传输比以及氢燃料电池工作能力的上和下阈值作为控制变量的最小氢消耗是基于MAT的最小氢化量,并将其作为模拟方法,并将其作为模拟方法。结果表明,在耕作条件下,与基于规则的控制策略相比,燃料电池拖拉机传输系统和控制策略参数的提议的协作优化方法可以合理地控制燃料电池和电源电池的运行状态,确保燃料电池在高效范围内运行,并在燃料电池系统的总体范围内运行,并在燃料电池系统的总体范围内效力(SOIS),并在合理的范围内控制电池。拖拉机等效氢消耗量减少了7.84%。
近年来,双重方法已经非常受欢迎,可以在机器学习模型的有效估计高维超参数上。迄今为止,二进制pa-Rameters是通过连续放松和四舍五入策略来处理的,这可能导致解决方案不一致。在这种情况下,我们通过基于适当的罚款术语求助于等效的连续二线重新构造,以应对混合二元超参数的挑战优化。我们提出了一个算法框架,在合适的假设下,可以保证提供混合二进制解决方案。此外,该方法的一般性允许在提议的框架内安全地使用现有的连续折叠求解器。我们评估了两个特定的机器学习问题的方法的性能,即,回归问题中的群 - 符号结构的估计和数据蒸馏问题。报告的结果表明,我们的方法具有基于放松和舍入的最新方法竞争。
对称的正定定义(SPD)矩阵渗透到许多科学学科,包括机器学习,优化和信号处理。配备了Riemannian的几何形状,SPD矩阵的空间受到了引人注目的特性及其所使用的riemannian Means,现在是某些应用中的金标准,例如脑部计算机界面(BCI)。本文解决了平均变量缺失的协方差矩阵的问题。这种情况通常发生在廉价或不可靠的传感器中,或者当伪影抑制技术删除导致等级矩阵的损坏的传感器时,阻碍了基于协方差的方法中Riemannian几何形状的使用。一种替代但可疑的方法包括删除缺少变量的矩阵,从而降低了训练集的大小。我们解决了这些局限性,并提出了一种基于大地凸的新配方。我们的方法在生成的数据集上进行了评估,这些数据集具有受控数量的丢失变量和已知基线,证明了所提出的估计器的鲁棒性。在实际BCI数据集上评估了这种方法的实际利益。我们的结果表明,所提出的平均值比经典数据插补方法更适合分类。关键字:SPD矩阵,平均值,缺少数据,数据插补。
摘要 - 电动汽车被许多人视为未来的汽车,因为它们非常有效,没有产生当地污染,是沉默的,并且可用于电网操作员的电源调节。为了能够估计电动汽车的性能,拥有适当的模型非常重要。电动汽车模型非常复杂,因为它包含许多不同的组件。每个组件需要正确建模,以防止错误的结论。每个组件的设计或额定值是一个困难的任务,因为一个组件的参数影响了另一个组件的功率水平。因此,将一个组件评为不适当的风险,这可能会使车辆不必要的昂贵或不可能。在本文中,提出了电动汽车的新设计模型。此模型基于Modelica与ModelCenter的组合。Modelica已用于模拟和模拟电动汽车,并且使用ModelCenter用于优化设计变量。该模型确保完成了与驾驶距离和加速有关的要求。
图1。进化多目标优化为多层设计提供了合适的框架。在这项工作中,我们研究了如何通过多物镜优化方法将机器学习模型(例如PMPNN,AlphaFold2/af2rank和ESM-1V)直接集成到蛋白质序列设计中,称为非主体分类遗传算法II(NSGA-II)。左:首先,通过突变操作员提出了新的设计候选。在这里,该操作员由ESM-1V组成,ESM-1V用于对残基位置进行排列,以及用于重新设计最小Nativelike-NativelikeTose的ProteinMPNN(PMPNN)。中间:然后使用源自AlphaFold2和PMPNN置信度指标的目标函数对设计候选者进行评分。右:最后,得分的候选人被分类为连续的帕累托阵线(这里编号为F1至F5),NSGA-II从最佳战线中选择了最佳战线的候选人。为了证明该框架的有效性,我们对RFAH的多层设计问题进行了深入的分析,RFAH是一种小的折叠式蛋白质,其C末端结构域可以在全-αRFAHα状态和全βrfahβ状态之间互连。在中间面板的两个RFAH状态的卡通表示中,以绿色表示可设计的位置(残基119至154);请注意,N端结构域在RFAHβ态的带状表示中未显示(请参见方法)。