在可再生能源渗透率较高的系统中,爬升率限制对于维持电网频率稳定性至关重要。开发方法来管理这一要求对于新发电厂的调试至关重要。这项工作提出了一种基于优化的电池储能系统 (BESS) 尺寸确定方法,同时满足爬升率要求。BESS 的一个关键关注点是估计其寿命,因此所提出的方法将退化计算作为主要贡献。该方法允许评估不同的场景,重点关注在 BESS 尺寸确定中包括退化的重要性、满足爬升率限制的技术要求、各种 BESS 技术的评估以及对不同运营策略、商业案例和市场框架的探索。使用基于西班牙南部太阳能数据的假设光伏发电厂来研究这些方面。
HAL 是一个多学科开放存取档案库,用于存放和传播科学研究文献,无论这些文献是否已出版。这些文献可能来自法国或国外的教学和研究机构,也可能来自公共或私人研究中心。
皮质神经假体视觉中的挑战是确定视觉皮层的最佳,安全刺激模式,以唤起盲人个体中所需的感知(特别是光感知),称为磷光素。当前,临床研究通过要求描述刺激方案的描述来洞悉感知磷光的感知特征。然而,多电极刺激设置的巨大参数空间使得很难得出关于导致良好感知磷光的刺激模式的最佳结论。需要在电刺激的参数空间中进行系统搜索,以实现良好的感知。贝叶斯优化(BO)是有效查找最佳参数的框架。使用患者对感知的评分作为反馈,可以建立基于迭代产生的刺激方案的患者反应模型,以最大程度地提高感知质量。通过迭代呈现刺激方案测试了用内部96通道微电极阵列植入的患者,该患者通过BO生成的刺激方案,用于第二个实验,该刺激方案是通过BO生成的。虽然标准BO方法并不能很好地扩展到超过十几个输入的问题,但我们建议使用基于信任区域的BO优化一组40个电极电流。生成的协议确定了哪些电极是从集合中同时刺激的,以及从0-50 µA范围的电流,最大总电流约束为500 µA。患者根据李克特量表上对感知质量的喜好提供了每种刺激的反馈,其中7个分数表示最高质量和0没有感知。在BO实验中,与RG实验相比,患者感知质量评级逐渐收敛于更高的值。同样,根据观察到的患者对较高的磷光磷酸的偏好,BO选择了逐渐更高的总电流值。最后,在先前的研究中,观察到的电极在产生磷光感知方面更有效,也可以通过BO逐渐选择较高的电流值的分配。这项研究证明了BO基于患者的反馈而融合到最佳刺激方案的力量,从而更有效地搜索了临床研究的刺激参数。
摘要钛合金由于具有出色的机械和摩擦学特性而在许多科学,工程和技术领域都使用。调查目标是通过应用添加剂过程(例如选择性激光熔化和加强生物硅化钛合金加强钛合金)来开发一种创新的综合材料,以供汽车行业使用。生物 - 硅(BS)纳米颗粒是使用钙叶酸的农业废物作为增强剂提取的。工业级钛(IGT)合金纳米复合材料用于制造具有生物 - 硅纳米颗粒的合金增强0、5、10和15%的合金。研究了IGT/BS纳米复合材料的机械性能,例如微硬度,拉伸(最终和产量)强度和抗压强度。根据调查的结果,15wt。%IGT/BS纳米复合材料具有更好的机械特征。L9 Taguchi的正交阵列用于说明磨损试验。ANOVA用于优化结果。ANOVA用于确定理想的过程参数,从而导致最低的磨损速率和摩擦系数(COF)。调查结果表明,施加的载荷为30 N,滑动速度为4 m/s,滑动距离为2000 m可能会达到最低的磨损。根据ANOVA,负载是影响磨损的最重要因素(30%)。
高维脑电图 (EEG) 协方差矩阵的维数降低对于在脑机接口 (BCI) 中有效利用黎曼几何至关重要。在本文中,我们提出了一种新的基于相似性的分类方法,该方法依赖于 EEG 协方差矩阵的维数降低。传统上,通过将原始高维空间投影到一个低维空间来降低其维数,并且仅基于单个空间学习相似性。相反,我们的方法,多子空间 Mdm 估计 (MUSUME),通过解决所提出的优化问题获得多个可增强类可分性的低维空间,然后在每个低维空间中学习相似性。这种多重投影方法鼓励找到对相似性学习更有用的空间。使用高维 EEG 数据集(128 通道)进行的实验评估证实,MUSUME 在分类方面表现出显著的改进(p < 0.001),并且显示出超越仅依赖一个子空间表示的现有方法的潜力。
摘要 能量存储是自主光伏太阳能系统性能和寿命的一个基本方面。铅酸电池是最广泛的存储技术,因为它们可用性高、成本低、维护性差。它们通常由于某些缺陷而失效,例如:分层、硫酸盐化、短路、氧化……这些各种缺陷严重影响电池的寿命,从而影响太阳能系统的终生成本。这些缺陷的出现大多数时候与系统尺寸不理想有关,该系统没有考虑某些电器的启动峰值功率。事实上,考虑这些峰值功率会导致电池尺寸过大,从而导致光伏场尺寸过大,因此需要非常大的投资。为了解决这些问题,我们在本文中提出了一种优化自主太阳能系统的方法,即集成超级电容器以满足峰值功率的要求。为此,在 Matlab 中开发了一个优化程序,并在 Simulink 下进行了仿真,以探索将超级电容器集成到具有各种负载曲线的独立光伏系统的存储元件中的优势。优化程序具有一个时间步长,能够收集负载波动和太阳辐射曲线,并根据地点生成最佳方向,以使光伏板产生最大的年功率。该程序还可以确定利用超级电容器混合存储系统所实现的经济效益,并根据固定的终生成本和相应的 LPSP,提出了各种电池板、电池和超级电容器的组合,以与 LVD 极限进行比较。研究了整个系统的能量管理系统,并对超级电容器在峰值功率之间充满电施加了约束。
这项研究致力于制定有限菌株非局部弹性拓扑拓扑优化。在原始问题中,我们采用标准的超弹性本构定律和voce硬化定律来描述弹性塑性响应,而后者通过微态正则化增强了弹性响应,以解决有限元方法或基于网格的方法的网格依赖性问题。对于优化问题,目标函数通过将其编写为多个子功能的总结来适应多个目标。采用连续的伴随方法来制定伴随问题;因此,相应的管理方程式以连续的方式编写,例如原始问题。因此,这些方程与使用的离散方法无关,并且可以将其实施到各种模拟方法中。此外,将派生的灵敏度取代为反应 - 扩散方程,以实现设计变量的更新。提供了单材料(Ersatz和真正的材料)和两种物质(矩阵和包含材料)拓扑优化,以证明配方的希望和性能。尤其是,我们讨论应将材料参数的值赋予ersatz材料的哪些值,材料非线性如何影响优化结果以及优化趋势如何通过给出目标函数权重的不同值来改变。
结果表明,TSFP能显著降低糖尿病小鼠的空腹血糖(FBG)水平并抑制糖代谢基因的mRNA表达。此外,TSFP可以改善脂质代谢紊乱并提高抗氧化能力。此外,TSFP可以减轻糖尿病小鼠的病理损伤并阻碍炎症过程。此外,补充TSFP通过丰富有益细菌和抑制病原微生物表现出更强的塑造和优化肠道微生物组成的能力。相关性分析还显示,TSFP治疗组的功能性细菌丰度与血清参数表现出更好的相关性,这对血糖调节和炎症缓解具有积极意义。
摘要 — 本文介绍了一种实时温度补偿功率检测器的设计和特性。该检测器的工作频带为 (40.5 – 42.5) GHz,专用于优化 5G 设备的功耗。本文提出了一种新颖而简单的技术来补偿电压灵敏度值 (γ) 随温度的变化。该技术基于添加一个无源电路,该电路充当具有正温度系数的电阻器,在较高温度下吸收较少的输入功率。结果,测量表明,灵敏度值随温度的下降被抑制了 55% 以上,因此,在频率 41 GHz 下,该值在温度范围 (20~100)°C 内变化很小 (γ = 1530 V/W±6%)。与最近发表的作品相比,所提出的检测器电路非常简单,并且没有功耗。此外,它以更高的频率运行,以适用于 5G 应用。
©作者2025。Open Access本文在创意共享属性下获得许可 - 非商业 - 非洲毒素4.0国际许可证,该许可允许以任何中等或格式的任何非商业用途,共享,分发和复制,只要您与原始作者提供适当的信誉,并为您提供了符合创造性共识许可的链接,并提供了持有货物的启动材料。您没有根据本许可证的许可来共享本文或部分内容的适用材料。本文中的图像或其他第三方材料包含在文章的创意共享许可中,除非在信用额度中另有说明。如果本文的创意共享许可中未包含材料,并且您的预期用途不受法定法规的允许或超过允许的用途,则您需要直接从版权所有者那里获得许可。要查看此许可证的副本,请访问http://创建ivecommons。org/licen ses/by-nc-nd/4。0/。