分子电子性能在用金属原子键合时容易修改,这在很大程度上会阻碍分子电子设备的设计和工程。在这里,我们报告了通过使用低TEM Perature扫描隧道显微镜/光谱法(STM/STS)研究的金属接触中无人分子轨道的受保护的Elec Tronic结构。在AU(111),Dycyanovinyl-己二磷(DCV6T)分子中自组装成各种纳米结构,包括Au原子协调的链,其中轨道重新调整和重新分配被Au-Lig-Lig-Ligligand杂交所指示。相反,当DCV6T沉积之前,将钴原子沉积在AU(111)上时,形成了坐标协调的链。与CO原子的杂交导致配体处的带隙状态,这可能是由钴3D态和占据分子轨道的混合引起的。,STS的测量结果是,在轨道的空间分布和能量比对方面,最低的未占用分子轨道(Lumo)和Lumo + 1与CO原子中的DCV6T键合中表现出与未协调分子中的特征相同的特征。 我们的研究表明,可以通过调整金属/配体组合来保护金属中所需的轨道结构。,STS的测量结果是,在轨道的空间分布和能量比对方面,最低的未占用分子轨道(Lumo)和Lumo + 1与CO原子中的DCV6T键合中表现出与未协调分子中的特征相同的特征。我们的研究表明,可以通过调整金属/配体组合来保护金属中所需的轨道结构。
在LA 3 Ni 2 O 7(LNO)中发现高t C超导性(SC)引起了极大的关注。以前,有人提出NI-3 D Z 2轨道对于实现LNO中的高t c sc至关重要。其中预制的库珀对通过与3 d x 2 -y 2轨道的杂交获得相干性,形成SC。但是,我们持有不同的观点,即层间配对S -Wave SC是由3 d x 2 -y 2轨道诱导的,这是由强层间层互动相互作用驱动的。为了包括两个e g轨道的效果,我们建立了一个两轨双层t -j模型。我们的计算表明,由于无双重占用限制,3 d x 2-y 2频段和3 d z 2键带的分别被大约2和10的倍数,这与最近角度分辨的光发射镜头测量值一致。因此,由于难以发展相干性,因此在3 d z 2轨道中几乎无法诱导高温SC。但是,在逼真的相互作用强度下,3 d x 2 -y 2轨道可以很容易地实现。带有电子掺杂,3 d z 2个带逐渐潜入费米水平以下,但t c继续增强,这表明LNO中的高t c s s c s s s c c s s no不需要。带有孔掺杂,T C最初掉落然后上升,并伴随着从BCS到BEC型超导体过渡的交叉。