疲劳裂纹是钢结构的常见缺陷,在不同的负载和各种环境因素的长期影响之后[1]。如果没有及时有效治疗,它最终可能导致结构性疲劳失败。维修和加固技术的出现提供了一种解决此问题的新方法。与更换损坏的结构部件相比,维修和加固技术在时间和成本方面都具有很大的优势[2,3]。在裂纹尖端上使用裂纹停止孔是最常用的临时控制技术之一。在过去的几十年中,许多学者研究了裂纹停止孔的工程应用[4,5]。结果表明,裂纹停止孔的形状,尺寸和姿势的合理设计可以有效地降低裂纹的生长速度并增加残留疲劳寿命。但是,当在疲劳裂纹尖端处理裂纹停止孔时,原始结构的机械强度被削弱,并创建了新的容易疲劳的区域。更重要的是,当裂纹从裂纹停止的边缘启动时,由于存在停止孔的存在,新裂纹的膨胀速率不会改变[6]。作为一种复合材料,纤维增强聚合物(FRP)材料具有高强度重量比,良好的耐腐蚀性和疲劳性能,并且几乎可以将其分为几乎所有所需的形状。在过去的几年中,关于结构缺陷大小的影响[7,8],粘合剂的特性[9,10]和FRP键合法
总结在多维空间中表现出的科学,技术,战争和军事力量之间的关系代表了一个非线性系统。从非线性创建有序系统的趋势是自然的。希望完全确定地做出决定,但实际上,这对军事系统的运营结构框架施加了风险。牢记未来应用的独特性和潜力,关于人工智能的引入将如何影响使用军事力量的变化的问题。本文定义的问题是通过分析和考虑人工智能在策略和学说的背景下的多层含义来解决的,同时遵循必要的资源。该研究基于当代政治和技术概念,考虑了政治,军事,法律和道德观点,确定了机遇,挑战和开放问题,并提供了全面的观察。假设人工智能将在不久的将来设法在不久的将来进行至少一部分自治假设,鉴于快速的技术发展,本文提供了洞察力和途径,以推动进一步的思维,研究和政策制定,以在军事中进行适当的整合,管理和使用人工智能。关键字:学说,军事,人工智能,资源,战略,技术。
[1] R. Sutton和A. Barto,《加固学习简介》,麻省理工学院出版社,1998年。[2] C. Szepesvari,《增强学习算法》,Morgan&Claypool Publishers,2010年。[3] C. Watkins,从延迟的奖励中学习,博士学位论文,剑桥大学,英格兰,1989年。[4] M. Wiering和M. Van Otterlo,加固学习:最新的ART,Springer,2014年。[5] M. Puterman,马尔可夫决策过程:离散随机动态编程,Wiley,1994年。[6] D. P. Bertsekas,动态编程和最佳控制,第一卷和II,雅典娜科学,2017年。[7] W. B. Powell,近似动态编程,Wiley,2011年。[8]选定的纸
美国太空部队于 2019 年 12 月成立,其任务是保卫和保护美国在太空的利益。到目前为止,该任务的范围一直局限于近地,大约在地球静止轨道范围(22,236 英里)。随着美国公共和私营部门的新业务延伸到地月空间,美国太空部队的关注范围将扩大到 272,000 英里甚至更远——范围增加了十倍以上,服务量增加了 1,000 倍。美国空军现在在该地区承担着更大的太空领域感知 (SDA) 监视任务,但其当前的能力和架构受到技术和为传统任务设计的架构的限制……随着 NASA 的人类存在从国际空间站延伸到月球表面、地月空间和行星际目的地,随着美国空军组织、训练和装备以提供保护和捍卫地球轨道内外重要美国利益所需的资源,新的合作将成为在这些遥远边境安全运作的关键。[强调添加] [1]
离线增强学习(RL)旨在根据历史数据改善目标政策而不是行为政策。离线RL的一个主要问题是分配转移导致Q值估计的分布转移。大多数现有的作品都集中在行为克隆(BC)或最大化Q学习方法以抑制分布转移。BC方法试图通过将目标策略限制为离线数据来减轻转移,但它使学习的策略高度保守。另一方面,最大化Q学习方法采用悲观的机制来通过根据动作的不确定性来最大化Q值和惩罚Q值来产生动作。但是,生成的措施可能是算法的,从而导致预测的Q值高度不确定,这反过来又将误导该策略以生成下一个动作。为了减轻分配转移的不利影响,我们建议通过统一Q学习和行为克隆以应对探索和剥削难题来隐含和明确地限制政策。对于隐式约束方法,我们建议通过致力于使目标策略和行为策略的行动无法区分的生成对抗网络统一行动空间。对于显式约束方法,我们会提出多重重要性采样(MIS),以了解每个状态行动对的优势权重,然后将其用于抑制或充分使用每个状态行动对。D4RL数据集上的广泛实验表明,我们的方法可以实现出色的性能。MAZE2D数据上的结果表明,MIS与单个重要性采样更好地解决了异质数据。我们还发现MIS可以有效地稳定奖励曲线。关键字:Q学习,行为克隆,悲观机制,多重重要性采样。
执行摘要F-22A,T/N 06-4109 NELIS空军基地,内华达州,2020年10月30日,2020年10月30日,大约在当地时间0930年,Mishap飞机(MA),F-22A,F-22A,尾巴号(T/N)06-4109,在Auxiliary Power Eutition(Apu)的尾气单元(APU)的尾气过度。MA被分配到NELIS空军基地(AFB),内华达州(NV)的422D测试和评估中队,总部位于佛罗里达州Eglin AFB。MA由第757架飞机维护中队,第57翼,Nellis AFB,NV。估计更换受损零件并修复MA的估计成本为2,690,000美元。2020年6月26日,MA开始进行广泛的修改,为操作测试任务做准备。 2020年10月28日,为了促进MA修改的故障排除,删除了APU混合排气管(AMED),在此期间未拉动和扣紧时间,在此期间,未对MA的结构或MA的数字形式提出警告,并根据维护成员(MXM)(MXM)1。2020年6月26日,MA开始进行广泛的修改,为操作测试任务做准备。2020年10月28日,为了促进MA修改的故障排除,删除了APU混合排气管(AMED),在此期间未拉动和扣紧时间,在此期间,未对MA的结构或MA的数字形式提出警告,并根据维护成员(MXM)(MXM)1。此外,这些错误未通过验证MXM1工作的现场7级主管MXM2纠正。2020年10月30日,MA需要通过航空航天地面设备(年龄)对飞机门进行防护和重新配置,但决定使用APU。在不幸的那天,APU紧急开关(AES)被错误地设置为“正常”。在术前检查中,MXM3在对MA表格的审查和通过视觉检查中未能识别,并在APU操作之前需要AMED安装。APU开始后,烟雾开始从Apu排气舱开始散发到左主登陆齿轮轮。MXM3延迟了紧急APU关闭,以查看故障报告代码(错误)的数字表格。附近的维护成员接近MA,并将AES设置为“紧急情况”,并手动关闭APU。事故调查委员会主席(BP)发现,大量证据表明,事故的原因是不当维护程序,导致APU开始时,在删除了AMED。BP还通过大量证据发现的四个其他因素,这些因素实质上导致了不幸的问题:(1)事故单位的培养物,包括对CB项圈的使用有限和对警告的使用不一致; (2)MA上测试仪器的设计,该仪器掩盖了对适用的CBS的访问; (3)MA修改的广泛性质; (4)由未成年人当天的几个非标准事件引起的干扰。
1 防卫装备早期部署新措施 2 加强防卫生产基地 3 研究与开发 4 防卫能力支撑要素 5 强化日美同盟及促进与地区和谐的措施 6 加强安全保障合作 7 应对气候变化的举措 8 精简举措 9 自卫队的组织结构 10 自卫队人员数量 11 增加官员数量等 12 要求改革税制
需要在多年生果实和坚果作物中控制害虫的新型策略,因为由于对少数活性成分和调节性问题的过度依赖,目标害虫通常表现出对化学控制的敏感性降低。作为化学控制的替代方法,可以将昆虫病作用真菌用作生物控制剂来管理害虫群体。但是,缺乏基本知识会阻碍现有产品的开发。现成的产品的开发需要收集,筛查和表征更多潜在的昆虫病变真菌和菌株。创建一个标准化的研究框架来研究昆虫病变真菌,将有助于确定真菌可能具有的生物控制活性的潜在机制,包括抗生素代谢物的产生;最适合在不同气候和农业生态系统中生存的菌株和物种;并优化了昆虫病作用真菌和新型制剂的组合。因此,这项迷你综述讨论了收集和表征新的昆虫病毒菌株,测试生物防治活性的不同潜在机制,检查不同物种和菌株耐受不同气候的能力的策略,最后如何利用这些信息将这些信息开发为种植者的产品。
患有影响其履行职责能力的疾病或健康问题的军人通常会被转介到医疗委员会进行体检并审查其医疗等级。在个人健康状况明显低于服务就业和留用标准的情况下,委员会将建议因病退役;如医疗政策和/或职业组的单一服务留用标准所规定。然而,在许多情况下,患者将首先被降级以进行治疗、恢复和康复。对于未完全康复的人员,委员会可能会建议患者永久降级并限制职责,或者他们可能会建议因病退役。然后,该建议被转发给人员管理部门或就业委员会,以供批准或决定和采取行动。