1 荷兰埃因霍温理工大学复杂分子系统研究所 2 荷兰埃因霍温理工大学机械工程系微系统研究所 3 德国亚琛工业大学电气工程与信息技术学院 4 德国于利希研究中心生物信息处理 - 生物电子研究所 5 新加坡国立大学材料科学与工程系(MSE) 6 新加坡国立大学电气与计算机工程系(ECE) 7 加拿大舍布鲁克大学技术创新跨学科研究所(3IT) 8 加拿大舍布鲁克大学纳米技术纳米系统实验室(LN2)-CNRS UMI-3463 9 电子、微电子和纳米技术 (IEMN),里尔大学,阿斯克新城,法国
jast(锌)是人类生理学中的金属基本元素,其原子MAS 65.38,原子数字30,与氧氧化物作为红氧化物,碳作为碳酸盐,具有硫化硫的硫酸盐或硫酸盐或硫酸盐或用硅酸盐作为硅酸盐的重要元素,是在地球上的重要元素。锌位点由与半胱氨酸,组胺,谷氨酸,天冬氨酸和水有关的Zn多面体组成,有300多个已鉴定的锌酶。锌是制备锌指蛋白,酶和激素的。它在许多疾病和生物学功能中都使用,例如咳嗽,发烧,白血病,烧伤,腹泻,预防癌症和免疫力,心血管系统中枢神经系统糖尿病糖尿病性抑郁症病毒性疾病冠状病毒疾病,人类免疫缺陷病毒。锌是生物功能和健康的最重要的无机元素。
•在学术上很强:拥有具有扎实的学术记录的相关博士学位。•研究经验:在进行研究方面表现出的经验,共轭聚合物合成和/或聚合物的物理交联经验被认为是加分。•自我激励:强烈自我驱动,具有出色的解决问题的技能,准备应对复杂的挑战。•动力和创造力:对创新充满热情,并能够在框外思考。•以细节为导向:对细节和对产生高质量工作的承诺的强烈关注。•协作:能够有效地独立工作和作为多学科团队的一部分。•有组织:出色的组织技能,能够有效地管理多个任务和项目。•出色的沟通者:具有英语的强大言语和书面沟通能力。
摘要 本综述讨论了有机分子结晶多晶型之间的固-固相变分析。虽然活性药物成分 (API) 是综述的范围,但无论有机分子是否具有生物活性,都没有特别定义其在结晶状态下的相互作用。因此,其他小有机分子也已纳入本分析,在某些情况下也讨论了聚合物。本综述的重点是实验分析;但是,增加了计算和理论方法部分,因为这些方法变得越来越重要,并且显然有助于理解例如转变机制,因为结果可以很容易地可视化。讨论了晶体结构之间固-固相变的以下方面。讨论了涉及热力学平衡的多晶型之间的相变热力学以及与吉布斯自由能密切相关的变量温度和压力。讨论了有机结晶固体中的两种主要转变机制,即置换和协同转变。回顾了用于理解 API 不同多晶型之间的机制和热力学平衡的实验方法。本文讨论了多晶型物性的转换,并回顾了热存储和释放,因为这是固态相变的主要应用之一。限制相变对于药物产品的控制很有吸引力,本文对其进行了回顾,因为它可能有助于通过使用亚稳态相来提高 API 的生物利用度。最后,本文讨论了有机材料的二级相变,这种相变似乎很少见。可以得出的结论是,尽管人们对多晶型和相变的一般理论有了很好的理解,但它对特定分子的作用仍然难以预测。
HAL 是一个多学科开放存取档案库,用于存放和传播科学研究文献,无论这些文献是否已出版。这些文献可能来自法国或国外的教学和研究机构,也可能来自公共或私人研究中心。
估计每μg/kg的95%上限额外额外风险高于零剂量的风险估计值,该剂量与0.0365μg/kg的美国背景剂量相关,其中包括0.02μg/kg - 来自饮食的0.02μg/kg - 来自饮食的天数,以及来自0.0165μg/k的日子(参见至0.0165μg-ke/k k and k。 4.3.4)。b EPA的寿命额外风险每μg/kg天剂量高于背景的剂量越来越高于膀胱高于0.2μg/kg天的非线性(请参阅第4.3.5节)和肺癌(请参阅第4.3.6节)癌症。对于这些健康结果,不应从CSF获得非线性区域的风险估计,而应从这些部分提供的非线性多项式方程中获得。c癌症斜率因子为17.6(mg/kg-day)⁻1(mg/kg-day)和31.7(mg/kg-day)⁻1。d按照氯普伦的毒理学评论中所述计算(美国EPA,2010年),假设正常
ACGIH American Conference of Governmental Industrial Hygienists AIC Akaike's information criterion ALD approximate lethal dosage ALT alanine aminotransferase AST aspartate aminotransferase atm atmosphere ATSDR Agency for Toxic Substances and Disease Registry BMD benchmark dose BMDL benchmark dose lower confidence limit BMDU benchmark dose upper confidence limit BML benchmark concentration lower confidence limit BMCU benchmark concentration upper confidence limit BMDS Benchmark Dose Software BMR benchmark response BUN blood urea nitrogen BW body weight CA chromosomal aberration CASRN Chemical Abstracts Service Registry Number CBI covalent binding index CHO Chinese hamster ovary (cell line) CL confidence limit CNS central nervous system CPN chronic progressive nephropathy CYP450 cytochrome P450 DAF循环系统的DAF剂量测定调节因子DCS疾病DEN二乙基硝基胺DMSO DMSO二甲基硫氧化二甲基二甲基二甲基甲酸DNA DNA脱氧核心酸EPA环境保护剂环境保护局FDA食品和药物管理FEV 1二秒ggd gd gd gd gd gd gd gd gd gd gdm glitem glutem ste转移酶GSH谷胱甘肽GST GST谷胱甘肽-S-转移酶HAWC健康评估工作空间协作HB/G-A动物血液:气体分区系数HB/G-H人体血液人体血液:气体分配系数HEC人类等效浓度HED人类等效剂量剂量剂量英雄健康和环境研究在线在线
图3:顶层和地下有机碳转离时间(τ,yr)的全局模式。在顶部(0-0.3 m)(a)和270 subloil(0.3-1 m)(c)层处于τ的全局分布。使用从全球土壤概况观测值及其环境协变量训练的机器学习模型生成了τ-环境关系,其空间分辨率为30 Arcsec(在赤道处约为1 km)。b,d,顶层和地下τ的纬度图案。橙色和蓝线分别代表在纬度上的顶部和地下土壤的平均τ。阴影灰色区域代表沿纬度的2.5 th和97.5个百分位数之间的变化。e,f,在不同主生物群落中两层处的平均τ。错误条显示每个生物群落内空间预测的95%百分位间隔。275
图 5:(a) n 型聚合物(区域随机 x+y,其中 x:R 1 =C 12 H 25 ,R 2 =H;y:R 1 =H,R 2 = C 12 H 25 )和 N-DMBI 的化学结构,用于证明 O 2 消耗。 (b) 掺杂 P(FBDOPV-2T-C 12 )的 ESR 光谱,在室温下于 t0 搅拌(黑线),在 100°C 下搅拌 5 至 90 分钟,在室温下之后(红线),溶于无水氯苯(ESR 管在充满氩气的手套箱中制备,O 2 < 10 ppm,黑暗条件)。信号(c)线宽和(d)强度(双重积分)随室温下于 t0 搅拌时间的变化
分子电子性能在用金属原子键合时容易修改,这在很大程度上会阻碍分子电子设备的设计和工程。在这里,我们报告了通过使用低TEM Perature扫描隧道显微镜/光谱法(STM/STS)研究的金属接触中无人分子轨道的受保护的Elec Tronic结构。在AU(111),Dycyanovinyl-己二磷(DCV6T)分子中自组装成各种纳米结构,包括Au原子协调的链,其中轨道重新调整和重新分配被Au-Lig-Lig-Ligligand杂交所指示。相反,当DCV6T沉积之前,将钴原子沉积在AU(111)上时,形成了坐标协调的链。与CO原子的杂交导致配体处的带隙状态,这可能是由钴3D态和占据分子轨道的混合引起的。,STS的测量结果是,在轨道的空间分布和能量比对方面,最低的未占用分子轨道(Lumo)和Lumo + 1与CO原子中的DCV6T键合中表现出与未协调分子中的特征相同的特征。 我们的研究表明,可以通过调整金属/配体组合来保护金属中所需的轨道结构。,STS的测量结果是,在轨道的空间分布和能量比对方面,最低的未占用分子轨道(Lumo)和Lumo + 1与CO原子中的DCV6T键合中表现出与未协调分子中的特征相同的特征。我们的研究表明,可以通过调整金属/配体组合来保护金属中所需的轨道结构。