。cc-by 4.0国际许可(未经Peer Review尚未获得认证)是作者/资助者,他已授予Biorxiv的许可证,以永久显示预印本。这是该版本的版权持有人,该版本发布于2023年3月8日。 https://doi.org/10.1101/2023.03.07.531591 doi:Biorxiv Preprint
封装植物生长调节和关联微生物:基于自然的解决方案,以减轻气候变化对植物的影响EstefâniaV。R. Campos 1.2*;来自E. S. Pereira 1,2的Anderson,Ivan Aleksieienko 3; Giovanna C. Do Carmo 4; Gholamreza Gohari 5;凯瑟琳·桑塔拉3; Leonardo F. Fraceto 1,Halley C. Oliveira 4* 1科学技术研究所,圣保罗州立大学(UNESP),AV。18087-180 311年3月311日,巴西圣保罗2 B.Nano Solutions Technologys LTDA,Dr. Street JúlioPrestes,355,18230-000SãoMiguelArtangel,圣保罗,巴西3 AIX Marseille University,CEA,CEA,CNR,Biam,Lemire,Remire,小天生生态学57-970巴西ParanáLondrina 5
“现在的商业生产的PHA是如今的高能源密集型,并且在很大程度上依赖有机原材料和清洁水,这与欧盟的目标冲突了循环,可持续的经济。当前的生产过程远离零排放中性碳策略,” Promicon政策简介的作者解释了。该方法发表在《研究思想和结果》杂志上。
2 patelaneri447 [at] gmail.com摘要:可持续食品系统对于应对诸如粮食安全,环境可持续性和文化保护等全球挑战至关重要。本评论探讨了人工智能(AI)和微生物在促进韩国发酵食品内的可持续性方面的交集。依靠微生物群落的传统发酵方法有助于食品保存,营养增强和降低环境影响。AI驱动的创新优化发酵过程,增强微生物分析并提高粮食生产效率。通过将AI与微生物研究相结合,食品行业可以实现精确的发酵,预测质量控制和资源有效的生产。本评论重点介绍了AI和微生物在推进可持续食品实践中的协同作用,同时保留了韩国丰富的烹饪遗产。尽管诸如技术适应和成本障碍之类的挑战,但AI的采用带来了粮食可持续性创新的重要机会。这项研究得出的结论是,接受AI增强发酵可以为子孙后代促进弹性,高效且具有重要意义的食品系统。关键词:可持续食品系统;食物中的人工智能;发酵中的微生物;韩国发酵食品;发酵优化;粮食安全与可持续性;益生菌和健康益处1。可持续食品系统可确保粮食安全和营养,同时促进和保护子孙后代的经济,社会和环境基础。引言可持续食品系统越来越被公认为是解决现代世界中一些相互联系的全球挑战的解决方案,例如气候变化,资源稀缺和人口增长。这样的系统优先考虑降低生态影响,减少食物损失以及公平获得有益健康的食物。它们对于解决越来越多的关注粮食安全,环境退化和文化保护至关重要。泡菜,doenjang(一种发酵的大豆酱)和gochujang(红辣椒酱)等食物是韩国美食的原产性,并且是来自百年历史的可持续食品的主要例子,这些实践来自数百年历史的实践,至今仍在实践。这些食物不仅是营养健康和食物保存的一部分,而且还反映了韩国的文化遗产。微生物驱动的发酵过程改善了食品风味,质地和保质期,不仅降低了对化学防腐剂的依赖,而且还降低了食物保存的能量。此外,可以重复使用发酵的副产品,从而有助于循环经济并改善环境可持续性。传统的韩国发酵食品对韩国人的饮食和文化认同非常重要。人工智能(AI)已成为优化过程和提高现代食品系统效率的变革性工具。当应用于研究发酵食品和生产的领域时,AI可以模拟可以预测发酵过程并优化资源使用的微生物相互作用。使用多种方法,例如磷 - 溶解的微生物(PSM)和生物肥料,植物生长促进
摘要矿物磷(P)来源的潜在短缺以及向循环经济的转变激发了在农业中引入新形式的P肥料。但是,P在新肥料中的溶解度及其植物的利用能力可能很低。 在本实验中,我们在P(28 mg P 2 O 5 kg -1)中孵育了63天的农业土壤,在存在一系列有机和无机性较差的P形式的情况下,在新化肥中常见:羟基磷酸盐(p-Ca),磷酸盐(P-CA),phosprate and phospration(p-ca),P-fe酸(P-CA),phytic Adict and phytic Adict(P-CA) p-org(p-mix)。 纤维素和硝酸钾(KNO 3)在孵育开始时加入刺激性微生物活性。 我们包括三倍超磷酸(TSP)的阳性对照和无p应用的阴性对照(有和没有纤维素和KNO 3)。 ,我们评估了随着时间的推移,我们评估了Nahco 3提取物(OLSEN P)中不同可溶的P形式的命运,作为可用植物可用的P.土壤微生物生物量的代理,真菌与细菌比率,土壤含量,土壤含量,酶促活性,酶促酶,含量酶,酸性酶和酸性酶和酸盐酶含量和酸盐酶,酸磷脂酶磷酸盐酶,含水液磷酸盐磷酸盐酶磷酸盐酶磷酸盐酶磷酸盐酶磷酸盐酶磷酸盐酶,含水量和酸味酶磷酸盐酶磷酸盐含量。受监控。 在孵育开始时,TSP在所有处理中显示出最高的OLSEN P,而P-FE显示出比其他可溶的P形式更高的OLSEN P但是,P在新肥料中的溶解度及其植物的利用能力可能很低。在本实验中,我们在P(28 mg P 2 O 5 kg -1)中孵育了63天的农业土壤,在存在一系列有机和无机性较差的P形式的情况下,在新化肥中常见:羟基磷酸盐(p-Ca),磷酸盐(P-CA),phosprate and phospration(p-ca),P-fe酸(P-CA),phytic Adict and phytic Adict(P-CA) p-org(p-mix)。纤维素和硝酸钾(KNO 3)在孵育开始时加入刺激性微生物活性。我们包括三倍超磷酸(TSP)的阳性对照和无p应用的阴性对照(有和没有纤维素和KNO 3)。,我们评估了随着时间的推移,我们评估了Nahco 3提取物(OLSEN P)中不同可溶的P形式的命运,作为可用植物可用的P.土壤微生物生物量的代理,真菌与细菌比率,土壤含量,土壤含量,酶促活性,酶促酶,含量酶,酸性酶和酸性酶和酸盐酶含量和酸盐酶,酸磷脂酶磷酸盐酶,含水液磷酸盐磷酸盐酶磷酸盐酶磷酸盐酶磷酸盐酶磷酸盐酶磷酸盐酶,含水量和酸味酶磷酸盐酶磷酸盐含量。受监控。在孵育开始时,TSP在所有处理中显示出最高的OLSEN P,而P-FE显示出比其他可溶的P形式更高的OLSEN P
水星(HG)污染是全球问题,因为全球HG的毒性高和广泛的分散。由于人为活动还是自然过程,HG排放量正在稳步增加,在某些地区,水平很高,直接威胁到人类和生态系统健康。然而,细菌和真菌已经响应HG诱导的应激而发展和适应,并开发了耐受性机制,尤其是基于Mer Operon系统,该系统通过HG摄取和通过HG减少反应涉及的MER操纵子系统。其他过程,例如生物蓄积或细胞外隔离,参与HG耐药性,污染土壤的研究允许隔离许多能够具有这些机制的微生物,具有强大的生物治疗方法的潜力。除了在确定生物地球化学周期中汞的命运方面发挥重要作用外,这些微生物确实可以用于降低HG浓度或至少稳定HG以修复受污染的土壤。此外,由于生物技术工具的开发,基于易汞的微生物的生物修复可以优化。最后,这些微生物是生物监测器的相关候选者,例如通过生物传感器的工程化,因为对汞的检测是维护生物健康的主要问题。
“微生物”将极小的生物体与不断进化繁殖的生物体的概念相结合,这是微生物学学科的统一原则。我们的期刊认识到微生物的广泛多样性和相互联系性,并为从事任何原核或真核微生物的高质量基础和应用研究的科学家的原创文章提供了一个先进的出版平台,也为微生物群落的生态学、基因组学和进化研究以及在实验室中探索培养微生物的研究提供了平台。
*仅出于信息目的。For the up-to-date list of microorganisms accepted by IDAs pursuant to Rule 13.2(a) of the Regulations under the Budapest Treaty, please refer to “Information on Kinds of Microorganisms Accepted and Amount of Fees Charged by IDAs” on the Budapest Treaty website (http://www.wipo.int/budapest).
细菌无处不在,能够在包括工业废水在内的各种环境中繁荣发展,这些环境通常会带来严峻的物理和化学条件。这些微生物产生各种细胞内和细胞外生物分子,可实现这种极端环境的适应,耐受性和利用。认识到对热稳定脂肪酶的工业需求不断增长,这项研究集中于从印度西孟加拉邦西孟加拉邦加尔各答的北24 Parganas的一家工厂收集的药物垫片中产生脂肪酶的细菌的隔离,表征和优化。十九个产生脂肪酶的细菌分离株,并使用Tributyrin琼脂(TBA)板筛选。通过具有20/80琼脂和甲基红色的杯子板法证实了细胞外脂肪性活性。通过形态学和生化测试对分离株进行表征。细胞外脂肪酶活性是在50 mM TRIS-HCL缓冲液中用二硝基苯基棕榈酸酯(PNPP)作为底物对分光光度计进行定量的,并在65°C孵育20分钟后在410 nm下测得的吸光度为20分钟,以评估可温度。产生了热不稳定脂肪酶,而8种则表现出热稳定脂肪酶活性。其中,三个分离株(MWS14,MWS6和MWS18)表现出高温脂肪酶的产生,其中MWS18是最有生产力的。结型和爆炸分析表明,这些分离株分别与肠球菌,芽孢杆菌和Serratia spe CIE共享99%的序列相似性。使用Kruskal-Wallis H检验的统计分析证实,在这三组分离株中,脂肪酶产生的显着差异。 该研究还可以预测,与革兰氏阳性分离株相比,革兰氏阴性细菌菌株中的脂肪酶产生潜力更大。 这些发现突出了药物废水作为热稳定脂肪酶产生细菌的来源的工业相关性。使用Kruskal-Wallis H检验的统计分析证实,在这三组分离株中,脂肪酶产生的显着差异。该研究还可以预测,与革兰氏阳性分离株相比,革兰氏阴性细菌菌株中的脂肪酶产生潜力更大。这些发现突出了药物废水作为热稳定脂肪酶产生细菌的来源的工业相关性。
微生物是没有显微镜的微小生命形式。他们约占地球生物的60%。“微生物”一词是指各种微观生物,包括细菌,真菌,病毒,古细菌和生物。这些微生物可能对人类无害或有害。一些微生物会引起严重的感染和疾病,而另一些微生物有助于维持环境平衡。古细菌是单细胞原核生物,具有与细菌不同的细胞壁结构。它们包含独特的脂质,使它们能够在极端环境中蓬勃发展。古细菌也可以在人类的肠道和皮肤中找到。微生物,包括微生物,是作为单细胞或簇存在的微观生命形式。有七种主要类型:细菌,古细菌,原生动物,藻类,真菌,病毒和多细胞动物寄生虫(Helminths)。古细菌由于其独特的细胞壁结构和缺乏肽聚糖而与真实细菌区分开。它们是可在极端条件下生存的原核细胞。一些古细菌组包括甲烷基因,卤素,热疗法和精神病/冷冻剂。这些生物使用各种能源,例如氢气,二氧化碳,硫或阳光(光营养形式)来存活。真核生物是包含核和复杂细胞器的单细胞或多细胞细胞。他们使用专业结构通过光合作用或吸收/摄入获得滋养。大多数真核细胞具有真实的核,并且主要是多细胞的。在数量,生物量和多样性方面,最大的微生物群是真核生物。鞭毛使用类似鞭子的结构进行运动;纤毛具有微小的跳动头发; Amoeboids采用伪虫; Sporozoans是非运动的。由几丁质组成的细胞壁支持各种营养方法:分解器吸收有机材料,共生体与植物形成关系,寄生虫与宿主有害相互作用。真菌产生称为菌丝的丝状管,骨料形成菌丝体。繁殖是通过释放孢子而发生的。非细胞实体由核酸核心组成,这些核酸核心被蛋白质涂层包围,缺乏繁殖外宿主细胞或独立代谢的能力。他们可以感染原核细胞和真核细胞,从而导致疾病。真核生物(如扁虫和round虫)共同称为蠕虫,在技术上不是微生物,而是微生物生命阶段,对于临床目的而言很重要。微生物的生物实体太小,无法用肉眼看到。例子包括细菌,古细菌,藻类,原生动物和微观动物(如尘螨)。尽管它们的重要性,但这些生物在历史上被低估了,直到Antonie van Leeuwenhoek发明了显微镜。发现微生物的发现使路易斯·巴斯德(Louis Pasteur)意识到许多疾病是由它们引起的,促进了巴氏杀菌的实践以确保食品安全。今天,我们认识到微生物在各种环境中的作用,包括水,土壤,动物皮肤和消化道。这种理解强调了免疫系统在预防疾病中的重要性。微生物在生态系统中起着重要作用,就像其他生物一样。细菌,特别是与引起疾病的病原体有关,但也具有帮助人类的有益特性。研究表明,古细菌与Eubacteria明显不同,甚至可能与人类更紧密相关。古细菌可以在各种环境中找到,包括水,土壤和我们的消化系统,它们有助于维持我们的健康。他们也可以在极端条件下繁衍生息,例如高温,酸度或咸味,使其成为温泉的常见居民和大多数生物体敌对的其他地区。几种动物物种以微观形式出现,包括节肢动物,旋转膜,loricifera,nematodes和原生动物。原生动物是一组单细胞的真核生物,其比细菌或古细菌的细菌更像动物和植物。它们会引起几种严重的人类疾病,例如疟疾,弓形虫病,贾第鞭毛虫,非洲卧铺疾病和chagas病。像酵母一样的微观真菌对人类无害,但在烘烤和酿造中起着至关重要的作用。酵母以糖为食,并将其转化为二氧化碳和乙醇,这会导致烘焙食品上升和发酵饮料变得陶醉。模具是微生物,与真菌具有某些特征但不是真正的真菌。它们包括感染植物并在过去引起毁灭性作物失败的致病霉菌。粘液模具是能够令人印象深刻的合作的单细胞生物,许多细胞聚集在一起以作为一个实体运行。科学家已经使用粘液模具来研究智能和解决问题。微观藻类曾经被认为是植物,但现在被认为是导致陆地植物的谱系的亲属。这些光合生物在整个历史中都很重要,有助于将氧气泵入大气中。藻类既可以通过清洁水,产生氧气或产生最终在我们的海鲜和饮用水中产生的有毒化合物来受益和伤害人类。科学家正在努力进行分类的其他许多微观生物。过去,许多微生物被聚集在“生物学家”的类别下,但是许多科学家现在认为该系统不足。在这里,科学家曾经使用文章文本,曾经使用一个称为“ Protista”的王国对无法识别为植物,动物或真菌的真核生物进行分类。然而,遗传分析揭示了该群体的许多成员与其他王国更紧密相关,而不是彼此之间的关系。不同的微生物可能对人类无害或有害,例如链球菌细菌,会导致链球菌喉咙和猩红热,以及乳酸杆菌,这有助于抵抗诸如胃流感之类的疾病。微生物提出的新发现已经根据光学显微镜研究推翻了先前的假设,揭示了对微生物的更复杂的理解。研究的进步导致了过去十年来我们对这些微小生命形式的理解的重大转变,并继续迅速发展。