随着人工智能 (AI) 和物联网 (IoT) 的融合重新定义了行业、商业和经济的运作方式,对边缘节能和高性能计算的需求呈指数级增长。神经形态计算是一种新兴的计算范式,受到生物大脑的低功耗和并行处理能力的启发,克服了传统计算机架构的许多限制。最重要的是,通过在内存中执行计算,神经形态计算克服了冯·诺依曼瓶颈,从而提高了计算能力,同时节省了更多的面积和功耗。虽然已经开发出几种具有出色能效的独立神经形态芯片来运行特定的人工智能算法,但这种数字系统在与边缘传感器连接时仍然会受到影响。这是因为传感输入是非结构化的、非规范化的和碎片化的,这会给具有分离的传感和处理单元的数字系统带来巨大的能源、时间和布线开销。这就需要融合传感、内存和处理功能的内存传感技术,以充分发挥生物电子学和机器人学中使用的高度复杂的传感器和执行器系统的潜力。尽管内存传感和计算的概念还处于起步阶段,但它已经在电子皮肤和仿生眼等专业领域取得了重大进展。然而,这些主要是软件实现,与之相辅相成的硬件挑战尚未得到解决。要充分利用仿生边缘处理能力,仍存在硬件层面(材料和设备)的基本挑战需要解决。因此,“内存传感和计算:新材料和设备迎接新挑战”于去年启动,引发了对最新发展和观点的讨论。来自微电子、材料和计算机科学等多学科背景和不同地区的研究人员已经发表了与此相关的意见和/或原创作品
本书的诞生源于这样一种认识:当今世界面临的最紧迫挑战本质上是多维的。从气候变化和全球健康危机到技术颠覆和社会不平等,这些复杂问题无法用简单的解决方案解决,需要采取一种整合跨学科观点的整体方法。我们相信,通过拥抱知识的互联性,我们可以打开新的理解视野,为解决我们时代最紧迫的问题铺平道路。《多学科研究的新兴视野》的核心是赞美多样性——无论是书中所代表的学科,还是为其论述做出贡献的学者的声音。通过一系列发人深省的章节,本书试图展示跨学科研究的丰富性和复杂性,强调来自不同背景的学者齐聚一堂应对共同挑战时产生的变革潜力。
摘要 - 本文提出了一种旨在检测套利机会的模型,重点是三角形和跨市场套利。利用Bellman-Ford算法和图形理论,该模型有效地确定了负循环,指示了高流动性环境中潜在套利的负循环,并结合了虚拟和实时数据。虽然证明它对于三角套利特别有效,但该模型需要进一步的完善才能提高其在跨市场场景中的有效性。在实际交易方案中,该模型面临着重大挑战,例如需要快速执行,交易费用的影响以及波动金融市场的需求。该研究讨论了必要的模型增强功能,以提高现实世界的适用性和执行效率。
一份病例报告强调了治疗一名 66 岁中国女性所面临的挑战,该女性被诊断为抗 MDA5 抗体阳性皮肌炎 (MDA5-DM),并伴有快速进展性间质性肺病 (RP-ILD)。尽管采取了积极的治疗干预措施,她的病情仍迅速恶化,凸显了这种亚型 DM 的严重性和破坏性。她的临床表现的一个显著特征是干扰素 (IFN)-g 和 IFN-a 水平显著升高,强调了 IFN 在驱动 MDA5-DM 相关 RP-ILD 的发病机制和进展中发挥的关键作用。为了阻止病情的持续进展,将 Janus 激酶 (JAK) 抑制剂托法替尼纳入她的治疗方案。这种治疗干预导致 IFN 相关细胞因子暂时减少,这为 JAK 抑制可以调节与该疾病有关的过度 IFN 反应带来了一线希望。其他四例类似病例强调了对 MDA5-DM 患者进行早期积极干预的重要性,以及使用 JAK 抑制剂阻断 IFN 的潜在治疗途径。迫切需要进行精心设计的临床试验,以揭示 RP-ILD 与 MDA5-DM 中 IFN 特征之间的复杂相互作用,并评估有望实现长期疗效和安全性的新型治疗靶点。
最后,我要感谢我的家人,感谢你们一直以来的支持。我希望我让你们为我感到骄傲,并将继续这样做。爸爸,谢谢你们一直相信我。伊萨姆,我的哥哥,我希望我能成为你们的灵感源泉,正如你一直告诉我的那样。我最亲爱的妈妈和我的妹妹海法,这一成就,以及你们所说的成功,是对你们无尽的支持、爱和牺牲的证明。妈妈,你不懈的努力、对我的信任以及在所有挑战中陪伴着我,一直是我的力量源泉。海法,你的鼓励和陪伴让我脚踏实地,充满动力。我希望这一里程碑能带给你们和你带给我生命中的快乐和自豪一样多。我会一直努力让你们为我感到骄傲,因为你们塑造了今天的我。还有我的妹妹胡埃达,我为她感到无比自豪,你教会了我很多东西,我永远敬佩你。你的毅力、自信和取得更大成就的动力是我不断的灵感源泉。你每天都让我惊叹不已。Pitouti,我爱你。Wenti outi,wenti zeda,wenti zeda,wenti zeda……。
c. 如果我们将新西兰警察局、新西兰国防军和毛利卫生局与皇家实体支出一起计算,政府可能会发现部门支出中承包商和顾问节省的资金略多于三分之一,非部门支出中节省的资金接近三分之二。 d. 2022/23 年,非部门机构在承包商和顾问的 OPEX 上所占总劳动力支出的比例低于部门和部门机构。然而,最新的 2023 年 9 月季度结果显示,部门的 OPEX 份额趋于回升至 10% 左右。 e. 迄今为止,削减支出的动力主要集中在 OPEX 上。这是因为 CAPEX 通常侧重于基础设施的长期建设,并且通常依赖于公共服务部门不会期望直接持续雇用的专业知识类型(例如工程师或建筑师)。
5. 机构有责任评估系统功能。与所有其他 FedRAMP 授权一样,授权流程会考虑 CSP 保护的系统数据的机密性、完整性和可用性。它不会证明 CSO 功能的性质或质量,也不会证明它最适合机构的特定技术需求。机构使用更广泛的标准来推动自己的采购和评估流程。FedRAMP 可能包括与特定 ET 相关的其他信息的要求(例如技术要求、性能指标或负责任的使用政策)。FedRAMP 致力于为机构提供工具,以保护他们在这些系统中处理的数据的机密性、完整性和可用性。
总体而言,客户体验技术正在帮助资产/设施/物业管理公司为客户提供更便捷、个性化和高效的服务。这些技术的集成,提供对关键信息的无缝访问,并利用人工智能提供定制建议,在提升服务提供商和客户的整体体验方面发挥着关键作用。普华永道致力于帮助组织实现其发展,并充分利用其技术路线图。我们的贡献使各种规模的组织都能够发展到成熟阶段,利用正确的技术和流程建立支持级别,并实现客户满意度和销售额的提高。我们邀请您与我们联系,进行个性化咨询,我们将帮助您塑造愿景、完善计划并实施战略路线图。让我们一起踏上这段旅程。
成簇的规则间隔回文重复序列被称为 CRISPR。它是一种可以编程来改变、消除或激活基因组的蛋白质。这项尖端技术提供了广泛的实施可能性,并将在未来几年彻底改变口腔保健。最广泛使用的基因组编辑技术包括归巢内切酶、转录激活因子样效应核酸酶、锌指核酸酶和 CRISPR-CRISPR 相关蛋白 9 (Cas9)。这些适应性强的基因组编辑工具可以以序列特异性的方式改变基因组。由于其高效和准确,基因组编辑方法 CRISPR-Cas9 已引起人们的关注,成为抗击癌症的有力武器。本综述介绍了这种方法及其用途,特别是在牙科领域的用途。
杰拉尔德·J·图森 杰拉尔德·J·图森是佐治亚理工学院工业与系统工程学院名誉教授。他在斯坦福大学获得工业工程学士、硕士和博士学位。他的研究兴趣包括工程经济分析、资本预算和统计决策理论。他与他人合作撰写了两本大学教材,《工程经济学》和《经济决策分析》。1981 年至 1991 年,他担任《工程经济学家》编辑,是美国工程教育学会会员,并担任董事会成员。图森博士于 1977 年和 1989 年获得尤金格兰特奖,并于 1989 年因在工程经济领域的杰出贡献和服务获得惠灵顿奖。1990 年,他获得 IIE 颁发的杰出出版物奖。他是工业工程师协会会员,并担任董事会成员。