1 Pangea Biomed Ltd.,以色列特拉维夫 2 特拉维夫大学,以色列特拉维夫 3 澳大利亚堪培拉澳大利亚国立大学科学学院生物数据科学研究所。 4 美国马里兰州贝塞斯达美国国立卫生研究院国家癌症研究所癌症数据科学实验室 (CDSL) 5 韩国水原成均馆大学医学院和人工智能系精准医学系 6 美国加利福尼亚州拉霍亚 Sanford Burnham Prebys 医学发现研究所癌症中心。 7 美国马萨诸塞州波士顿麻省总医院癌症中心 8 美国马萨诸塞州波士顿哈佛医学院医学系 9 美国马里兰州贝塞斯达美国国立卫生研究院国家癌症研究所泌尿生殖系统恶性肿瘤分部 10 美国马里兰州贝塞斯达美国国立卫生研究院国家癌症研究所女性恶性肿瘤分部 11 以色列特拉哈绍梅尔 Chaim Sheba 医疗中心癌症中心 12 个性化癌症治疗全球创新网络 (WIN) 13 美国马里兰州贝塞斯达美国国立卫生研究院国家癌症研究所病理学实验室 14 美国马里兰州贝塞斯达美国国立卫生研究院国家癌症研究所神经肿瘤学分部。 * 同等通讯作者:gal@pangeabiomed.com (GD)、tuvik@pangeabiomed.com (TB)、eytan.ruppin@nih.gov (ER)、ranit@pangeabiomed.com (RA)
单向取向结构在增强大孔材料性能方面表现出显著的效率,但难以以省时省钱的方式构建。本文利用一种简便的方法来制造取向大孔陶瓷材料,即采用天然石墨薄片作为易散性材料,并利用累积轧制技术优先使薄片在陶瓷基体内排列。在大孔氧化锆陶瓷中形成了分布均匀的片状至近椭圆形孔隙,通过控制石墨薄片的添加量可以调节其孔隙率和微观结构特征。所得材料表现出良好的性能组合,抗压强度高达 1.5 GPa 以上,超过了大多数其他具有类似孔隙率的多孔氧化锆陶瓷,同时热导率低至 0.92 – 1.85 Wm − 1 ⋅ K − 1 。这项研究为开发具有增强性能的新型定向大孔材料提供了一种简单的方法,并且可以通过轻松的大规模生产来促进其应用。
摘要 - 自主车轮加载器的控制设计需要高实现和低阶动力学模型。降低订单的目的是减少模型中的状态数量,同时保持与原始模型相当的表现。在车轮装载机中的所有功率组件中,由于其非线性和僵硬的动力学性质,转向和工作液压系统的模型订单降低最多。本文描述了一种物理启发的模型订购方法,该方法可以将模型顺序降低近30%。这是通过将快速动态的订单丢弃并将多个状态巩固到较少的新状态中来实现的。此方法也可以扩展到其他类型的越野车,例如挖掘机,推土机等。所提出的方法的模型顺序降低了近30%。仿真结果表明,在车轮装载机的典型操作条件下,还原阶模型表现出与全阶模型非常相似的性能,输出误差小于6%。
摘要:为突破传统装备战损评估方法面临的技术瓶颈,通过分析数字孪生在战损评估中的应用现状,总结当前数字孪生技术在战损评估中的应用需求及存在的问题。以战损试验为依托,在梳理装备战损试验评估与数字孪生技术研究现状的基础上,探究面向装备战损试验评估的数字孪生技术的内涵及应用特点。构建了面向装备战损试验评估的数字孪生体系架构及实施方案。提出了面向战损试验评估的数字孪生关键技术及实现。本研究为数字孪生在战损评估中的应用提供了理论参考和方法指导,对数字孪生战场建设和战损评估的开展具有重要的参考意义。
使用MineFlayer,神经网络的实现提供了很大的灵活性。硬编码的行为,例如机器人的收集,移动,构建和其他行为,可以改变为程序员的愿望。可以创建一个新的数据集,可以创建并用于训练新的网络以身份洞穴;煤炭,铁和钻石等矿石上的数据集可用于训练机器人进行采矿。可以使用州机器来切换神经网络和行为,以通过理想的自主权执行更复杂的任务。参考
摘要:为突破传统装备战斗损伤评估方法面临的技术瓶颈,通过分析数字孪生在战斗损伤评估中的应用现状,总结当前数字孪生技术在损伤评估中的应用需求及存在的问题。
摘要:中风是由大脑血管损伤引起的突然神经系统疾病,导致了严重的功能局限性。该案例研究检查了一名43岁男性左半肉曲发作的使用,特别是Bobath和以任务为导向的方法,以增强摩托车独立性。患者经历了各种局限性,包括前庭功能,运动范围,肌肉张力和力量,姿势控制和良好的运动技能。使用Ashworth量表和加拿大职业绩效指标(COPM)进行评估,职业治疗干预措施在几个方面都显示出进展,尽管尚未完全实现。这项研究强调了密集和持续的职业疗法对改善日常活动中患者独立性的重要性。
本文以 AIRBUS A350XWB MSN1 的地面振动测试为背景,该测试在首飞前不久进行。该测试由来自德国航空航天中心和法国国家航空航天研究所 (DLR-ONERA) 的跨国 GVT 团队在法国图卢兹的 AIRBUS 设施内进行,仅用了 9 个测量日。在测试期间,使用了 LMS Scadas III 数据采集系统,采集单元采用分布式架构,通过 300 米光纤电缆连接,以最大限度地缩短传感器电缆长度。总共记录了 530 个加速度信号、27 个力信号和 33 个其他信号。该结构通过 13 个电动振动器从 23 个位置受到激励,主要使用优化的扫频正弦信号,偶尔使用随机信号,获得超过 180 次激励运行。为了了解更多信息,还对一些特定模式应用了相位共振法 (PRM)。
1国立核物理研究所,费拉拉部分,意大利费拉拉2个物理与地球科学系,费拉拉大学,费拉拉大学,费拉拉,意大利费拉拉3国立核物理研究所,弗拉斯卡蒂国家实验室,意大利弗拉斯卡蒂国家实验室,意大利4号国家核物理学,米兰比科卡,米兰比科卡5号国立核物理学6核问题研究所,白俄罗斯州立大学,明斯克,白俄罗斯7,瑞士日内瓦8 Cern 8国立核物理研究所,莱格纳罗的国家实验室,意大利莱纳罗9号物理与天文学系,Padua大学,Padua,Padua,Padua,Padua,意大利,ITALY 10院校,10级,北意大利大学。保加利亚11物理技术学院,武汉大学,武汉,中华人民共和国12 WHU-NAOC天文学联合中心,武汉大学,武汉,中华人民共和国,中华人民共和国13米兰大学,米兰州立大学,米兰,意大利米兰大学,意大利14号。美国弗吉尼亚州费尔法克斯乔治·梅森大学物理与天文学,美国15国立核物理研究所,都灵分区,都灵,都灵,意大利都灵,都灵,都灵大学,都灵大学,都灵,都灵,意大利都灵大学17国家核物理研究所
钛(Ti)植入物以其机械可靠性和化学稳定性而闻名,这对于肉体再生至关重要。已经开发了各种形状控制和表面修饰技术,以增强生物学活性。尽管胶原蛋白/磷灰石骨微结构对机械功能,抗菌特性以及生物相容性,精确和多功能模式控制对重生微结构至关重要。在这里,我们开发了一种新型的成骨裁缝条纹 - 微图案MPC-TI底物,可诱导对定向骨基质组织的遗传水平控制。这种生物材料是通过微观图2-甲基丙酰氧甲基乙基磷酸胆碱(MPC)聚合物通过选择性光反应到钛(Ti)表面上产生的。Stripe-Micropatened MPC-TI底物建立了一个独特的细胞粘附界面,可通过肌动蛋白细胞骨架比对来稳健地诱导成骨细胞细胞骨架对准,并促进形成骨骼模拟骨骼的骨骼与方向的胶原蛋白/apatite consue。更多,我们的研究表明,通过激活Wnt/β -catenin信号传导途径,促进了这种骨比对过程,该途径是由强烈的细胞比对引导引起的核变形引起的。这种创新的材料对于个性化的下一代医疗设备至关重要,提供了高可定制性和骨微结构的积极恢复。调节细胞粘附和细胞骨架比对的创新方法激活了Wnt/β -catenin信号传导途径,对于骨分化和方向至关重要。的意义陈述:这项研究表明了一种新型的成骨剪裁条纹 - 微调Micropatened MPC-TI底物,该基材基于遗传机制诱导成骨细胞比对和骨基质方向。通过采用光反应性MPC聚合物,我们成功地微孔钛表面,创建了一种生物材料,从而刺激单向成骨细胞排列,并增强了天然骨模拟于天然骨模拟各向异性微观结构的形成。这项研究提出了第一种生物材料,该生物材料人为地诱导机械上各向异性骨组织的构建,并有望通过增强骨骼不同的诱导和方向来促进功能性骨骼再生 - 靶向骨组织的数量和质量。