个性化和精确药物的长期目标是为具有疾病的患者准确预测给定治疗方案的结果。目前,由于患者群体中的潜在因素导致对感兴趣的药物的反应或对治疗相关的不良事件的反应不佳,因此许多临床试验无法满足其终点。事先确定这些因素并纠正它们可能会导致临床试验的成功增加。通过对健康和患病个体的OMICS进行综合和大规模的数据收集工作,导致了宿主,疾病和环境因素的宝藏,这有助于旨在治疗疾病的药物的有效性。随着OMICS数据的增加,人工智能允许对大数据进行深入分析,并为现实世界中的临床使用提供了广泛的应用,包括改善患者的选择和鉴定可行的伴侣疗法靶标,以改善更多患者的可转换性。作为用于复杂药物疾病 - 宿主相互作用的蓝图,我们在这里讨论了使用OMICS数据预测使用免疫检查点抑制剂(ICIS)预测癌症免疫疗法的反应和不良事件的挑战。基于OMICS的方法是改善患者结局的方法,因为在ICI病例中也已应用于广泛的复杂疾病环境中,体现了OMIC在深度疾病分析和临床使用中的使用。
随着社会电气化趋势,机场面临着不可避免的电动汽车(电动汽车)和电动航空潜在升高(EA)的不可避免的过渡。对于航空,短途航班首先是燃料交换到电气运输的排队。这项工作研究了Visby,瑞典的机场以及EA和EV充电对电力系统的影响。它使用了一年操作中测得的机场负载需求以及模拟的EA和EV充电配置文件。太阳能光伏(PV)和电池电池储能系统(BES)进行了建模,以分析潜在的技术 - 经济增长。用四种方式对BESS电荷和放电控制进行建模,包括新型的多目标(MO)调度,以结合自消耗(SC)增强和峰值功率。将每个模型方案进行比较的峰值剃须能力,SC速率和付款额(PBP)。还评估了BESS控件的年度退化和相关成本。结果表明,新颖的MO调度在峰顶剃须和SC方面表现良好,从而有效地减少了Bess的闲置时期。MO调度还通过名义经济参数导致电池控制最低的PBP(6。9年)。此外,对PBP的灵敏度分析表明,峰值关税显着影响BESS投资的PBP。
私人家庭投资(PVS)和电池的投资的利益取决于电力的市场价格,这反过来又受PVS和PVS和电池的使用的影响。这在集中发电系统与对PVS和电池的家庭投资之间创造了反馈机制。为了调查这种反馈效果,我们将用于家庭投资的本地优化模型与欧洲发电销售模型联系起来。本地优化基于对214个瑞典家庭测量的消费量。模型比较了2032年的集中电力供应系统的三种不同方案,以及几种敏感性情况。我们的结果表明,在调查案件中,瑞典家庭中瑞典家庭中电池存储容量的5 E 20 gW P的总投资水平为5 E。这些级别比算上市场反馈之前的水平低33%。光伏投资的利益受到的影响受到电力价格以及有关电网关税和税收的假设的最大影响。电池投资的价值取决于PV电力和市场套利的自我消费增加的好处。©2020作者。由Elsevier Ltd.这是CC下的开放访问文章(http://creativecommons.org/licenses/4.0/)。
气候变化需要大规模部署碳捕获和存储(CCS)。最近的计划表明,到2030年,CCS的容量增加了八倍,但CCS扩展的可行性却是有争议的。使用CCS和其他政策驱动技术的历史增长,我们表明,如果计划在2023年至2025年之间两倍,并且其故障率降低了一半,则CCS到2030年可能会达到0.37 GTCO 2年-1,比大多数1.5°C较低,但比大多数2°C途径更高。保持轨道至2°C将要求在2030-2040 ccs加速至少与2000年代的风力发电一样快,并且在2040年之后,它的增长速度比1970年代至1980年代的核能快。只有10%的缓解途径符合这些可行性限制,几乎所有这些途径描绘了<600 GTCO 2 2100捕获和存储。通过假设CCS计划的失败和生长的速度不如烟气脱硫的速度大约是这一数量的两倍,从而放松约束。
我们基于蒙特卡洛树搜索形式主义引入了一种多目标搜索算法,以进行反归结计划。多目标搜索允许将各种目标组合起来,而无需考虑其规模或加权因素。为基于这种新型算法进行基准测试,我们在八个反曲面实验中采用了四个目标。目标范围从基于起始材料和步骤计数的简单目标到基于综合复杂性和路线相似性的复杂范围。我们表明,通过仔细的复杂目标,多目标算法可以优于单目标搜索,并提供更多样化的解决方案。但是,对于许多靶标化合物,单目标设置是等效的。尽管如此,我们的算法为合成计划中的特定应用程序纳入了新的目标。
摘要:维护设备对于增加生产能力和减少生产时间至关重要。随着数字化的出现,行业能够访问大量数据,这些数据可通过实施预测性维护来确保其长期的生存能力和竞争优势。因此,本研究旨在使用来自汽车行业公司的公司的大数据来证明对机器人单元的预测维护应用。开发了一个超参数长期记忆(LSTM)模型,结果表明该模型能够以良好的精度预测失败的一天。分析了进行实际工业计划所固有的困难,并提出了改进建议。
本文提出将氨基酸改性氧化石墨烯衍生物 (GO-AA) 作为活性材料,用于捕获水介质中的有机污染物并进行电化学检测。草甘膦 (GLY) 是一种存在于许多水体中的除草剂,被选为基准物质,以测试这些材料的电活性有效性,从而为捕获事件提供直接证据。通过环氧环开环反应将 L -赖氨酸、L -精氨酸或 L -蛋氨酸接枝到 GO 表面,促进氨基酸结合并伴随 GO 的部分还原。合成过程导致电荷电阻从 GO 的 8.1 K Ω 降至各种 GO-AA 的 0.8 – 2.1 K Ω,从而支持这些材料在电化学传感中的适用性。所得 GO-赖氨酸、GO-精氨酸和 GO-蛋氨酸用于从水中吸附 GLY。 GO-Lysine 与 GLY 的相互作用最强,1 小时后的去除效率为 76%,大约是工业基准吸附剂颗粒活性炭的两倍。当用作活性材料捕获 GLY 并进行电化学检测时,GO-AA 的性能也优于原始未改性材料。GO-Lysine 表现出最佳灵敏度,即使浓度低至 2 μ g/L 也能识别水中的 GLY。分子动力学模拟证实,这种材料增强的性能可归因于赖氨酸部分和 GLY 之间的氢键和盐桥相互作用,而氢键和盐桥相互作用源于氢键和盐桥相互作用。
我们提出了一项详细的研究,该研究对具有连续体的quasibound状态的机械符合光子晶体的微腔。最近预计此类系统将减少Fabry-Pérot-type光学机械腔中的光损失。但是,它们需要两个相互面对的光子晶体平板,这对实验实现构成了巨大的挑战。我们研究了如何简化这样的理想系统,并且仍然在连续体中表现出quasibound状态。我们发现,面向分布式的bragg反射的悬浮的光子晶体平板实现了连续体中具有准态状态的光力学系统。在该系统中,可以消除辐射腔损失,以至于仅由材料吸收的耗散性损失占主导地位。这些建议的光力学腔设计预计将具有超过10 5的光学质量因子。
a Bash Biotech Inc,600 est Broadway,Suite 700,圣地亚哥,CA 92101,美国 b 生命科学实验室,KTH-Royal Institute of Technology,斯德哥尔摩 SE-17165,瑞典 c 病理学和肿瘤生物学系,人类生物学高级研究中心(WPI-ASHBi),京都大学,京都 606-8501,日本 d 泌尿外科,东京大学医学院,东京 113-8654,日本 e 血液学和再生医学中心,卡罗琳斯卡医学院,斯德哥尔摩 SE-17177,瑞典 f 医学生物学系,Atat € urk 大学医学院,埃尔祖鲁姆 25240,土耳其 g 宿主-微生物组相互作用中心,牙科、口腔和颅面科学学院,伦敦国王学院,伦敦 SE1 9RT,英国h 哥德堡大学萨尔格伦斯卡大学医院分子与临床医学系,哥德堡 SE- 41345,瑞典 i 查尔姆斯理工大学生物与生物工程系,哥德堡 SE-41296,瑞典 j 生物创新研究所,哥本哈根 N DK-2200,丹麦 k 郑州大学药学院先进药物制备技术教育部重点实验室,郑州 450001,中国
文章标题:人工智能(AI)在医疗保健中的应用:综述 作者:Mohammed Yousef Shaheen[1] 所属机构:沙特阿拉伯[1] Orcid ids:0000-0002-2993-2632[1] 联系电子邮件:yiroyo1235@tmednews.com 许可信息:本作品已根据知识共享署名许可 http://creativecommons.org/licenses/by/4.0/ 以开放获取的方式发表,允许在任何媒体中不受限制地使用、分发和复制,只要正确引用原始作品即可。使用条款和出版政策可在 https://www.scienceopen.com/ 上找到。预印本声明:本文为预印本,尚未经过同行评审,正在考虑并提交给 ScienceOpen Preprints 进行开放同行评审。DOI:10.14293/S2199-1006.1.SOR-.PPVRY8K.v1 预印本首次在线发布:2021 年 9 月 25 日