脑表达基因的进化速度明显慢于其他组织中表达基因的进化速度,这一现象可能是由于高级功能限制造成的。其中一个限制可能是神经元组合对信息的整合,从而增强环境适应性。本研究通过三种类型的同步探索了神经元中信息整合的生理机制:化学、电磁和量子。化学同步涉及多巴胺和乙酰胆碱等神经递质的弥散释放,导致传输延迟数毫秒。电磁同步包括动作电位、电间隙连接和偶联。电间隙连接使皮质 GABA 能网络内的快速同步成为可能,而偶联则使轴突束等结构能够通过细胞外电磁场同步,速度超过了化学过程的速度。据推测,量子同步涉及离子通道通过期间的离子相干性和髓鞘内光子的纠缠。与化学和电磁过程中的有限时间同步不同,量子纠缠提供瞬时非局部相干状态。神经元可能从较慢的化学扩散进化为快速的时间同步,离子通过皮质 GABAergic 网络内的间隙连接可能促进快速伽马波段同步和量子相干。这篇小综述汇编了有关这三种同步类型的文献,为解决神经元组装中结合问题的生理机制提供了新的见解。
当前的电力传输技术受到能源摩擦耗散引起的能量损失的困扰,并且正在搜索能够在环境压力和温度下能够在环境压力和温度下进行无摩擦能量运输的材料。激子,电子和孔的准孔子结合状态,能够具有量子冷凝。所产生的超级效应在理论上具有非隔离的能量传递,1,2可以激发新型的电子设备并刺激了巨大的创新,以实现有效的能量转移应用。此外,预计在高温下,激子的冷凝于传统的超导性。3虽然凝结是可以实现的,因为激子容易重新组合,尤其是在室温下,但通过将激素与极化子与北极子耦合3,4,并且在胆汁材料中的电子和孔的空间分离是通过实验实现的。5 - 8个双层系统为激子冷凝提供了重要的平台,这是由于电子的空间分离和层之间的空间分离,从而阻止了激子快速重组。石墨烯双层已被证明是激子冷凝的有希望的候选人,其电子状态的扭曲角度依赖于
p-issn:2349–8528 e-issn:2321–4902 www.chemijournal.com ijcs 2024; 12(5):08-14©2024 IJCS收到:接受:07-06-2024接受:13-07-2024 Faizul Hasan在德里制药和植物化学系,德里制药科学和植物化学系,新德里,印度NISHITA KALRA,NISHITA KALRA DELHACIESS和PHISICERING and PHIYTOCHEMATICERTIST和PHINICAL,NISHITA NISHITA KALRA,新疾病,纽约德里,印度尼达·阿拉夫·西迪克(Nida Afroz Sidique Vijender Kumar药物学和植物化学系,德里制药科学与研究大学,印度新德里,印度新德里
摘要使用多能干细胞(PSC)作为替代疾病或再生医学中典型组织的分化细胞类型的来源,现在是一个活跃的研究领域,采用治疗眼部疾病的方法,例如与年龄相关的黄斑变性或现在的帕金森氏病。,但是这项研究的基础在于一个完全不同的科学领域,即癌症的遗传学作用。在这篇综述中,我们从发现129小鼠特别受到生殖细胞肿瘤的发现开始,通过鉴定出胚胎癌(EC)细胞为畸形细胞的干细胞表现出这些肿瘤的干细胞,从而脱离了它们与早期胚胎的腐蚀作用,从而使它们的角色脱离了,从而,人们最终会出现生殖细胞肿瘤的发展。然后来自包括人类在内的灵长类动物。这是一个故事,它说明了科学通常如何通过个人调查员的利益和见解来发展,通常会出乎意料且意想不到的结果。
流行病学研究表明,暴露于有机氯农药二甲蛋白与帕金森氏病(PD)的风险增加有关。动物研究支持α-突触核蛋白预形的原纤维(α -Syn PFF)与成年雄性C57BL/6小鼠中的α-突触核蛋白预先形成的原纤维(α -Syn PFF)和MPTP模型之间的神经元易感性之间的联系。在先前的研究中,我们表明发育性二旋蛋白的暴露与与多巴胺能神经元发展和维持在12周大的基因内的DNA修饰的性别变化有关。在这里,我们使用捕获杂交 - 与自定义诱饵进行了捕获,以在多个时间点(出生,6周,12周和36周龄)询问先前鉴定基因的整个遗传基因座的DNA修饰。我们在每个时间点确定了对神经发育重要的途径的DNA修饰的变化,这在很大程度上与神经发育重要的途径相关,这可能与早期神经发育的关键步骤相关,多巴胺能神经元分化,突发发生,突触,突触可塑性和Glial-neuron相互作用。尽管大量的年龄特异性DNA修饰,但纵向分析确定了少数DMC,具有二杆蛋白诱导的表观遗传衰老的偏转。这些结果的性别特异性增加了证据表明,对与PD相关的暴露的性别针对性的反应可能在疾病中可能存在性别特定的差异。总体而言,这些数据支持这样的观念:发育性二甲蛋白的暴露会导致表观遗传模式的变化,这些模式在暴露期间持续存在并破坏关键的神经发育途径,从而影响包括PD在内的晚期生命疾病的风险。
内共生生物中,其中一种生物的细胞生活在另一种生物的细胞(或器官)中,在整个生命之树中,在各种各样的分类单元中都进化了很多次,并且通常涉及不同王国生物不同生物之间的亲密相互作用[1]。通过使特殊性获得完全新颖的特征,这种以前独立物种的进化合并在进化创新中具有重要作用[2]。共生介导的创新的显着例子包括自身肉芽的增长和氮固定的增益[4]。这种创新允许共生生物入侵新的生态区[5],并导致形成了全新的生物群落,例如珊瑚礁。因此,内共生体的基础是跨越陆生,淡水和海洋栖息地的许多不同生态系统的功能[6]。通过开放新的生态机会,内共生植物可以充当关键创新,而在进化时段标准可以催化多样化和燃料适应性辐射[7-9],尽管并非总是[10]。除了它们在生物多样性中的作用外,内共生性还可以通过将功能分隔为专业结构或器官,从而使更复杂的生物体的演变[11],从而增加了有机体多功能性和模态性[12]。最重要的是,这在真核细胞的细胞器的共生起源中很明显,这些细胞的细胞器具有专门的代谢功能,如果在大量细胞质中表现出效率(或不可能)。这种提高的效率被认为提供了
内共生生物中,其中一种生物的细胞生活在另一种生物的细胞(或器官)中,在整个生命之树中,在各种各样的分类单元中都进化了很多次,并且通常涉及不同王国生物不同生物之间的亲密相互作用[1]。通过使特殊性获得完全新颖的特征,这种以前独立物种的进化合并在进化创新中具有重要作用[2]。共生介导的创新的显着例子包括自身肉芽的增长和氮固定的增益[4]。这种创新允许共生生物入侵新的生态区[5],并导致形成了全新的生物群落,例如珊瑚礁。因此,内共生体的基础是跨越陆生,淡水和海洋栖息地的许多不同生态系统的功能[6]。通过开放新的生态机会,内共生植物可以充当关键创新,而在进化时段标准可以催化多样化和燃料适应性辐射[7-9],尽管并非总是[10]。除了它们在生物多样性中的作用外,内共生性还可以通过将功能分隔为专业结构或器官,从而使更复杂的生物体的演变[11],从而增加了有机体多功能性和模态性[12]。最重要的是,这在真核细胞的细胞器的共生起源中很明显,这些细胞的细胞器具有专门的代谢功能,如果在大量细胞质中表现出效率(或不可能)。这种提高的效率被认为提供了
基因与复制的起源的接近性在细菌中的复制和转录相关过程中起关键作用。潜在来源位置的计算预测在起源发现中具有重要作用,从而严重降低了实验成本。我们将ORCA(复制评估的起源)作为可视化核苷酸差异的快速且轻巧的工具,并预测了复制起源的位置。orca使用核苷酸差异,DNAA盒区域和靶基因位置的分析来找到潜在的起源位点,并具有随机的森林分类器来预测这些位点可能是起源的。orca的预测和可视化功能使其成为有助于实验确定复制起源的有价值方法。orca用Python-3.11编写,以最少的精力处理任何操作系统,并且可以处理大型数据库。完整的实施详细信息在补充材料中提供,源代码可在GitHub上免费获得:https://github.com/zoyavanmeel/orca。
异态性别染色体起源于一对获得性别确定基因座的自动染色体,随后停止重组,导致性别受限的染色体变性。大多数线虫物种缺乏异态性别染色体,并使用X染色体计数机制来确定性别,其中一个或多个X染色体(XX/X0)的雄性为半合子。一些丝状线虫物种,包括人类的重要寄生虫,具有异晶XX/ XY核型。已经假定性别是由这些特殊的Y连锁基因座确定的。然而,核型分析表明,丝状Y染色体源自参与X型体融合事件的常染色体的未连接同源物。在这里,我们生成了一个染色体水平的参考基因组,用于litomosoides sigmodontis,这是一种具有祖先丝状核型和性别确定机制(xx/x0)的丝状线虫。通过将组装的染色体映射到透性线虫祖先连锁(或Nigon)元素中,我们推断出,祖先的丝状X染色体是Nigonx(祖先X-inked Element)和Nigond(Ancestryally Autoso-autoso-mal)之间融合的产物。在带有XY系统的两个丝状谱系中,已经有两个独立的X-Auto-一些涉及不同常染色体黑色NIGON元素的染色体融合事件。在这两个谱系中,Neo-X和Neo-Y染色体共享的区域都在X的祖先常染色体部分内,证实了丝状Y染色体是源自自动体的未使用的同源物。XY丝状线虫中的性别确定可能会继续通过祖先的X染色体计数机制进行操作,而不是通过y连接的性别决定的基因座进行。
“健康与疾病的发展起源(DOHAD)” Hy Pothesis认为,在产前,新生儿和幼儿发展期间暴露的环境因素是成年和老年疾病的危险因素(福古纳加,2021年,2021年; Gluckman和Hanson,Hanson,2004年)。在2003年西奈山会议上关于“后来的神经退行性疾病的早期环境起源:研究和风险评估”的早期环境起源”,扩展了该假设以通过脑发育,并探索有毒物质对这一过程的影响(Landrigan等,2005)。产前和早期产后时期是大脑发育的重要时间,在该时间内建立大脑的基本结构。在这些时期内的干扰可能会对基本神经元电路的建立产生不利影响,从而削弱了大脑的基本结构。在脑细胞增殖,迁移或分化过程中暴露于毒物会导致发育不全(神经元种群降低),异端(神经元错误定位)或发育不良(异常配置的树突状疾病)