28。Linsel Simon Mathias(在Pers。)Ludwig-Maximilians-Universitätmünchen物理学系和Arnold Sommerfeld理论物理中心(ASC)
药品价值链(包括临床试验、定价、获取途径和报销)是为传统单一疗法设计的。尽管已经发生了范式转变,增加了靶向联合疗法 (TCT) 的相关性,但法规和常规做法的适应速度很慢。我们探索了 9 个欧洲国家 17 家领先癌症机构的 19 位专家报告的 23 种晚期黑色素瘤和肺癌 TCT 的获取途径。我们发现,各国患者获取 TCT 的途径存在差异,各国特定法规存在差异,黑色素瘤和肺癌的临床实践也存在差异。更适合联合疗法背景的法规可以提高整个欧洲获取的公平性,并促进基于证据和授权使用联合疗法。
文章标题:抗击 COVID-19:人工智能技术与挑战 作者:Nikhil Patel[1]、Sandeep Trivedi[2]、Jyotir Moy Chatterjee[3] 所属机构:毕业于杜比克大学,联系电子邮件 ID:Patelnikhilr88@gmail.com[1],IEEE 会员,毕业于 Technocrats Institute of Technology,联系电子邮件 ID:sandeep.trived.ieee@gmail.com[2],尼泊尔加德满都佛陀教育基金会[3] Orcid id:0000-0001-6221-3843[1]、0000-0002-1709-247X[2]、0000-0003-2527-916X[3] 联系电子邮件:sandeep.trived.ieee@gmail.com 许可信息:本作品已以开放获取形式发表根据 Creative Commons 署名许可 http://creativecommons.org/licenses/by/4.0/,允许在任何媒体中不受限制地使用、分发和复制,前提是正确引用原始作品。条件、使用条款和出版政策可在 https://www.scienceopen.com/ 找到。预印本声明:本文为预印本,尚未经过同行评审,正在考虑并提交给 ScienceOpen Preprints 进行公开同行评审。DOI:10.14293/S2199-1006.1.SOR-.PPVK63O.v2 预印本首次在线发布:2022 年 7 月 25 日 关键词:COVID-19、SVM、神经网络、NLP、数学建模、高斯模型、疫情防控
分娩陪护人员在分娩前、分娩期间和分娩后或妊娠结束时为孕妇和产后人员提供身体、情感、教育和非医疗支持。分娩陪护服务可能包括制定分娩计划和持续分娩支持;以患者为中心的宣传以及身体、情感和非医疗支持;教育、指导和健康导航;促进 Medicaid 成员和医疗服务提供者之间的沟通;并提供与社区资源以及分娩和育儿资源的联系。服务将包括围产期探访和分娩支持。
征文:教育和教育研究中的人工智能国际研讨会 (AIEER) AIEER 2024 教育和教育研究中的人工智能国际研讨会是第 27 届欧洲人工智能会议 ECAI 2024 [https://www.ecai2024.eu/] 的一部分。本次研讨会定于 2024 年 10 月 19 日至 20 日星期六和星期日举行。 研讨会范围 本次研讨会有两个不同的重点,旨在更广泛地面向教育人工智能领域。 第 1 部分。由社会科学主导的讨论,讨论人工智能应用可能有助于解决的教育中的实际问题。这包括教育和教学人工智能的研究,也包括社会科学、经济学和人文学科,包括所有学科,如教育和教学实际行动、以教育需求为重点的劳动力市场研究、教育史和相关教育文化遗产,以及决策和行为科学观点的信息预测。一方面,我们关注人工智能、教育和社会之间的联系。这包括定量和定性研究、分析教育和劳动力市场数据的数据科学方法、推荐系统的人工智能方法以及数字化学习。另一方面,我们关注如何使用人工智能来突破该领域的界限。这包括开发新方法(包括使用人工智能的方法)、寻找和提供可访问的新数据源、丰富数据等等。在这两种情况下,不同观点之间的沟通和相互理解至关重要,这也是本次研讨会的目标之一。更广泛地说,我们感兴趣的是人工智能方法如何影响教育的所有领域以及企业和劳动力市场。这包括从小学到高等教育的所有教育部门如何受到人工智能方法的影响和对其作出反应的方法。用人工智能方法设计数字化未来为教育提出了几个问题:在最广泛的层面上,立法和规范问题;在公司层面,关于投资决策以及如何保持生产力和劳动力的问题;在个人层面,关于资格以及哪些技能需要应用和可能重新学习的问题。因此,技能和资格是教育和教育研究中人工智能的核心。第 2 部分。关于可以开发哪些人工智能应用程序(以及如何开发)来解决第 1 部分提出的问题的(计算机科学主导)讨论。使用基于人工智能的系统来支持教学或学习已经发展了 40 多年,但近年来,由于 COVID-19 大流行期间电子学习工具的使用增加以及最近生成人工智能的爆炸式增长,其增长显着增加。我们正处于这一领域发展的关键时刻,人工智能专家和教育专家必须携手合作,以在教学过程中最佳地利用这项技术。本次研讨会旨在为展示新提案和反思这一具有如此社会意义的领域的最新技术创造空间。在第一部分中,我们特别关注人工智能的技术方面,重点关注用于内容创建(生成式人工智能)、学生分析(机器学习)、学习分析或教师可解释的人工智能方法的具体技术
文章标题:人工智能(AI)在医疗保健中的应用:综述 作者:Mohammed Yousef Shaheen[1] 所属机构:沙特阿拉伯[1] Orcid ids:0000-0002-2993-2632[1] 联系电子邮件:yiroyo1235@tmednews.com 许可信息:本作品已根据知识共享署名许可 http://creativecommons.org/licenses/by/4.0/ 以开放获取的方式发表,允许在任何媒体中不受限制地使用、分发和复制,只要正确引用原始作品即可。使用条款和出版政策可在 https://www.scienceopen.com/ 上找到。预印本声明:本文为预印本,尚未经过同行评审,正在考虑并提交给 ScienceOpen Preprints 进行开放同行评审。DOI:10.14293/S2199-1006.1.SOR-.PPVRY8K.v1 预印本首次在线发布:2021 年 9 月 25 日
癫痫发作类型识别对于癫痫患者的治疗和管理至关重要。然而,这是一个耗时耗力的困难过程。随着机器学习算法的进步,自动诊断系统有可能加速分类过程、提醒患者并支持医生做出快速准确的决策。在本文中,我们提出了一种新型多路径癫痫发作类型分类深度学习网络 (MP-SeizNet),它由卷积神经网络 (CNN) 和具有注意机制的双向长短期记忆神经网络 (Bi-LSTM) 组成。本研究的目的是仅使用脑电图 (EEG) 数据对特定类型的癫痫发作进行分类,包括复杂部分性、简单部分性、失神性、强直性和强直阵挛性癫痫发作。EEG 数据以两种不同的表示形式输入到我们提出的模型中。 CNN 接收从 EEG 信号中提取的小波特征,而 Bi-LSTM 接收原始 EEG 信号,以便我们的 MP-SeizNet 能够从癫痫发作数据的不同表示中进行联合学习,从而获得更准确的信息学习。我们利用最大的 EEG 癫痫数据库——天普大学医院 EEG 癫痫发作语料库 TUSZ v1.5.2 评估了所提出的 MP-SeizNet。我们使用三重交叉验证对不同患者数据评估了我们提出的模型,并使用五重交叉验证对癫痫发作数据评估了模型,结果分别获得了 87.6% 和 98.1% 的 F1 分数。
短期和长期职业规划的第一步是设定目标。这些目标可以是职业、教育或培训目标。它们应该是现实的、具体的和可衡量的,这意味着它们是可以实现的,而且你知道什么时候能实现它们。一旦你有了目标,你就需要制定一个行动计划,确定完成目标需要采取的步骤。这张工作表将帮助你组织你的目标和行动计划。
重新架设高架,首席增长官,NTEGRAME HEVRAME MASTHEAD MASTERCLASS将对DOS和不开始重新构建间接费用的DOS和不深入了解。从与批评者打交道到了解捐助者对间接费用的实际看法,这是一个实用的研讨会,可带您进行研究,以帮助您塑造组织如何构成间接费用。12.05pm简介 - 集思广益活动:由DGB Global合作伙伴Peter Dalton促进的医学研究合作资金将促进我们的第二天来自澳大利亚医学研究机构的参与者,以探索和确定可以增强对整个部门的慈善支持的协作机会。12.20pm午餐休息1.00pm延续 - 集思广益活动2.55pm活动总结 - Aamri Dr Saraid Billiards,Aamri首席执行官Aamri 3.00pm下午3.15点下午3.15pm MCRI网站旅行4.00pm活动关闭