摘要:将分子耦合到光腔内的量化辐射场已显示出巨大的前景,可以改变化学反应性。在这项工作中,我们表明,可以通过将反应与腔反应强,产生正骨 - 或para取代的产物而不是元产品来从根本上改变硝基苯的基础选择性。重要的是,这些是从腔体以外的同一反应中获得的产物。最近开发的AB从头算法用于理论上计算阳离子卫星中间体的相对能量,这表明所有产品的动力学优选的溴化位点。对腔内和外部的蜂巢中间体的地下电子密度进行分析,我们演示了强耦合如何引起分子电荷分布的重组,这又导致不同的溴化位点直接取决于空腔条件。总体而言,此处介绍的结果可用于了解腔体从机械的角度使用对基态化学反应性的变化,并将前沿理论模拟与最先进但现实的实验腔条件直接连接。■将耦合分子偶联到光腔内的量化辐射场中产生一组光子 - 物质杂种态,称为polaritons。这些极化状态通过调整物质的特性以及光子的特性来以一般和便捷的方式改变化学反应性。23请注意,尽管将极化子用于新的化学的理论预测广泛地,但1已在实验上证明的很大程度上与北极星修饰的反应动力学有关。例如,富尔吉德或类似分子的电子激发态之间的集体耦合以及光腔内量化的光子模式,所谓的电子强耦合(ESC),以增强或抑制光化异构化反应。2,3在另一个示例中,振动激发共同与微腔的光子激发(通常称为振动强耦合(VSC))共同耦合,导致化学动力学可以增强4、5或抑制。6-8在这两个集体耦合方案中,反应的动力学发生了变化,但重要的是,与腔体以外的相同反应相比,没有生成新的产品。最近的理论研究1,9表明,可以通过将分子的电子状态与空腔光子模式耦合来显着修改分子系统的基态。10-20,特别是,已经表明,腔体可以修改Diels- alder反应的内部/EXO选择性,21,22修改了地面质子转移反应屏障和驱动力15,16,并选择性地控制点击反应的乘积。
大型露天矿是获取自然资源的重要基础设施。然而,这种类型的矿山在运营期间可能会遇到环境和安全问题,因此需要持续监测。在本研究中,利用地理空间信息开放平台和开源地理空间信息软件构建了一个基于 Web 三维 (3D) 的监测系统,该系统针对韩国江原道的露天矿。目的是开发一个露天矿监测系统,使任何人都可以监测矿山运营引起的地形和环境变化,并开发和恢复该地区的生态。露天矿被分为活跃矿山和非活跃矿山,并为每种类型的矿山制定了监测项目和方法。选择基于 WebGL 的开源平台 Cesium,因为它支持与运行时间相关的动态数据可视化和硬件加速图形,这是监测中的重要因素。露天矿监测系统是基于包含矿井监测所需信息的地理空间数据库,通过开发开源系统软件而开发的。监测地理空间信息数据库由数字图像和地形数据组成,还包括矢量数据和恢复计划数据。监测中使用的基本地理空间信息包括高分辨率正射影像(GSD 0.5 m 或以上),用于
槲寄生在法国赤松林中发生率的上升是阿尔卑斯山赤松林保护和可持续性面临的主要问题之一。与天然林相比,人工林更容易受到生物入侵。研究区域覆盖着针叶林(低海拔地区主要是法国赤松),法国西南部阿尔卑斯山的一部分黑森林受到半寄生虫槲寄生的严重影响。由于槲寄生的发生,研究区域的法国赤松树枝肿胀、树体弯曲;树木死亡率惊人。为了管理和尽量减少生物入侵,检测和绘图在森林保护中起着关键作用。通过遥感技术检测和绘制生物入侵地图是研究人员要克服的挑战。高分辨率 (VHR) 卫星图像和航空图像的进步以及遥感和 GIS 技术的应用,已在森林健康状况的检测、绘图和监测方面显示出良好的效果。在本研究中,数字航空正射影像(分辨率 15 厘米)和 VHR 卫星图像 WorldView-2(全色 0.5m 和多光谱 2m)用于通过基于像素的最大似然分类器检测和绘制欧洲松林中槲寄生的存在。在 WorldView-2 光学影像上,成功绘制了欧洲松林的分布,精度较高(96%),kappa 系数为 0.84。存在槲寄生的欧洲赤松在所有波段的光谱反射率都较低,但 WorldView-2 的 NIR1、NIR2 和红边对槲寄生的区分能力更强。同样,植被指数 NDVI 85(红光和 NIR2 的波段组合)也有区分槲寄生的潜力。此外,结果表明,槲寄生与海拔呈负相关和显著相关(r=-0.5135;p<0.01),而与欧洲赤松的 DBH 呈显著正相关(r=0.52;p<0.01)。通过使用海拔和 DBH 建立了弱但统计显著的多元回归和逻辑回归,以模拟欧洲赤松树中槲寄生的发生率。通过应用基于像素的最大似然算法对松林中的槲寄生进行检测,在 WorldView-2 图像中实现了总体分类准确率 (86%) 和 kappa 系数 (0.52)。2m 分辨率 WV-2 与 0.15cm 分辨率正射影像分类输出的比较表明,空间分辨率较低但光谱分辨率较高的 WV-2 影像的分类精度较高(86%)。这项研究揭示了高分辨率光学影像在检测和绘制树木侵染地图方面具有巨大潜力。检测和绘制此类生物入侵地图可为更好地管理森林提供有用信息。关键词:检测和绘图、欧洲赤松、槲寄生、光学影像、生物入侵
披露:Siegfried EC:Dermavant、Lilly、Pfizer、Regeneron Pharmaceuticals Inc.、Verrica Pharmaceuticals – 顾问;GSK、LEO Pharma、Novan – 数据和安全监测委员会;Janssen、Lilly、Regeneron Pharmaceuticals Inc.、Stiefel、Verrica Pharmaceuticals – 临床试验首席研究员。Bieber T:AbbVie、AnaptysBio、Asana BioSciences、Astellas Pharma、BioVersys、Bristol Myers Squibb (BMS)、Daiichi Sankyo、Dermavant、Lilly、Galapagos/MorphoSys、Galderma、Glenmark、GSK、Kymab、LEO Pharma、Lilly、Menlo Therapeutics、Novartis、Pfizer、Regeneron Pharmaceuticals Inc.、Sanofi – 演讲费用。 Paller AS:AbbVie、Dermavant、Incyte、Janssen、Krystal Biotech、LEO Pharma、Lilly、UCB – 研究者;Aegerion Pharmaceuticals、Azitra、BioCryst、BMS、Boehringer Ingelheim、Castle Creek Biosciences、Janssen、Krystal Biotech、LEO Pharma、Lilly、Novartis、Regeneron Pharmaceuticals Inc.、Sanofi、Seanergy、TWi Biotechnology、UCB – 顾问;AbbVie、Abeona Therapeutics、Catawba Research、Galderma、InMed Pharmaceuticals – 数据和安全监测委员会。Simpson EL:AbbVie、Galderma、Kyowa Hakko Kirin、LEO Pharma、Lilly、Merck、Pfizer、Regeneron Pharmaceuticals Inc. – 研究者; AbbVie、Boehringer Ingelheim、Dermavant、Forté、Incyte、LEO Pharma、Lilly、Menlo Therapeutics、Pfizer、Pierre Fabre Dermo-Cosmetics、Regeneron Pharmaceuticals Inc.、Sanofi、Valeant – 顾问。Cork MJ:AbbVie、Astellas Pharma、Boots、Dermavant、Galapagos、Galderma、Hyphens Pharma、Johnson & Johnson、LEO Pharma、L'Oréal、Menlo Therapeutics、Novartis、Oxagen、Pfizer、Procter & Gamble、Reckitt Benckiser、Regeneron Pharmaceuticals Inc.、Sanofi – 研究员和/或顾问。Weidinger S:德国特应性湿疹治疗 (TREAT) 注册工作组 – 联合首席研究员;LEO Pharma、L'Oréal、Pfizer、Sanofi – 机构研究经费; AbbVie、Almirall、Boehringer Ingelheim、Galderma、Incyte、Kymab、LEO Pharma、Lilly、Pfizer、Regeneron Pharmaceuticals Inc.、Sanofi – 咨询公司;AbbVie、Almirall、LEO Pharma、Lilly、Pfizer、Regeneron Pharmaceuticals Inc.、Sanofi – 在教育活动上演讲;与多家生产用于治疗牛皮癣和特应性湿疹的药物的制药公司进行临床试验。Eichenfield LF:AbbVie、Amgen、Arcutis、BMS、Castle Biosciences、Dermavant、Forté、Galderma、Incyte、LEO Pharma、Lilly、Pfizer、Regeneron Pharmaceuticals Inc.、Sanofi、Valeant/Ortho Dermatologics – 咨询服务酬金; AbbVie、Amgen、Arcutis、Dermavant、Galderma、Incyte、Lilly、Pfizer、Regeneron Pharmaceuticals Inc.、Sanofi、Valeant – 研究支持(机构)。Chen Z、Bansal A、Yu H:Regeneron Pharmaceuticals Inc. – 员工和股东。Rossi AB:Sanofi – 员工,可能持有公司股票和/或股票期权。致谢:研究由 Sanofi 和 Regeneron Pharmaceuticals Inc. 赞助。ClinicalTrials.gov 标识符:NCT02612454。医学写作/编辑协助由 Alyssa DiLeo 提供,博士学位,来自 Excerpta Medica,由赛诺菲和 Regeneron Pharmaceuticals Inc. 资助,符合良好出版规范指南。于 2024 年 5 月 2 日至 4 日在斯洛伐克科希策举行的第 23 届欧洲儿科皮肤病学会 (ESPD) 大会上发表。
ABSTRACT: simple, rapid, economical, precise and accurate stability indicating rp- hplc method for the estimation of dapagliflozin propanediol monohydrate and sitagliptin phosphate monohydrate in tablet dosage form has been developed.a reverse phase high performance liquid chromatographic method was developed for the estimation of dapagliflozin propanediol monohydrate and sitagliptin已经开发了磷酸盐剂量形式的磷酸盐。实现分离柱kromasil c18(150 x 4.6)5 µm ID,梯度程序20 mm二氢磷酸钾磷酸钾缓冲液:芳族依腈,作为流动相,流速为1 ml/min。在DAPA的220 nm保留时间进行检测,发现SITA为8.71和2.94分钟。该方法已通过线性,准确性和精度进行验证。dapagliflozin丙二醇一水合物和磷酸西他汀磷酸盐一水合物的线性度25.68-755.83μg/ml。开发的方法被发现是准确,精确且快速的,以估计dapagliflozin丙二醇一水合物和磷酸西丁列汀磷酸盐剂量形式。在相同的色谱条件下,该药物应对水解,氧化,光解和热降解的应力条件。在RP-HPLC系统上分析了应力样品。关键字:dapagliflozin丙二醇一水合物,西他列汀磷酸盐一水合物,稳定性,指示RP-HPLC方法,验证。i。简介:糖尿病是慢性疾病,当胰腺产生足够的胰岛素或人体无法有效使用其产生的胰岛素时,会发生。这可能导致健康问题。高血糖,也称为血糖升高或血糖升高,是不受控制的糖尿病的常见影响,并且随着时间的流逝会导致身体的真正伤害,尤其是神经和血管。糖尿病是人体无法产生足够或任何胰岛素的一组疾病,无法正确使用所产生的胰岛素,也无法组合任何一个。这可能导致高血糖水平。葡萄糖是血液中发现的糖,是您的主要能源之一。缺乏胰岛素或血液中积聚。[1]。2型糖尿病也称为非胰岛素依赖性糖尿病,这意味着您的身体无法正确使用胰岛素。主要是人们通过健康的饮食和运动来控制其血糖水平,有些人正在使用药物。[2]尽管2型糖尿病在老年人中更为普遍,但年轻人的情况有所增加,因为肥胖儿童人数增加。[3]。DAPA和SITA的结构如图所示。[4-5] Sita sitagliptin增加胰岛素的产生并减少肝葡萄糖过量产生。西他列汀延长了GLP-1和GIP的作用。通过提高活性降脉蛋白水平,西他列汀会增加胰岛素的产生并降低α细胞的胰高血糖素分泌,从而降低肝葡萄糖过量产生。DAPA抑制SGLT2,DAPA阻止了肾脏中过滤的葡萄糖的吸收,肾脏中的葡萄糖葡萄糖排除量增加了葡萄糖的排除水平,并增加了葡萄糖的水平。[9-15]。ltd,使用。[6-8]通过文献调查发现,分析方法可用于单独估计DAPA和SITA以及其他组合。因此,人们认为可以执行稳定性,指示RP-HPLC方法开发和验证片剂剂型的同时估计。随着国际协调会议(ICH)指南的出现,建立稳定性指标方法(SIAM)的要求变得更加明确。该指南明确要求在各种条件下进行强制分解研究,例如pH,光,氧化等。和药物与降解产物的分离。[16]因此,这项工作的目标是开发一种新的敏感稳定性,指示RP-HPLC方法同时确定DAPA和SITA。此外,它还以平板电脑剂型形式的名为UDAPA-S 10/100含DAPA和SITA的市场产品进行了验证。[17] II。使用Shimadzu HPLC,LC 2010 CHT模型和LC解决方案软件。乙腈,甲醇,二氢磷酸盐,MILI-Q水和AR级的正磷酸来自Merck Life Science Pvt。从当地市场购买了商业剂量UDAPA-S 10/100。
*共同开通的作者:迈克尔·B·阿特金斯(Michael B. Glenn Merlino博士,国家癌症研究所基础研究中心科学总监,37 Consent Drive,Bethesda,MD 20892-4264,gmerlino@helix.nih.gov。
有机化学是一个重要的研究领域,它涵盖了各种反应,合成和有机化合物的分析。这些化合物由碳和氢原子组成,在日常生活中有许多应用,包括工业,农业以及酶或蜡等天然物质。该学科解决了基本原理,包括对有机物质的合成和分析。该领域的范围很大,涵盖了从化学产品到各种天然物质的所有类型的有机化合物。有机化学具有丰富的历史,可以追溯到1828年,当时弗里德里希·沃勒(Friedrich Wohler)通过反应成功合成尿素,证明可以从更简单的物质中产生化合物。这一发现导致了1901年至1931年之间有机化学研究的诺贝尔奖。对碳基分子的研究至关重要,因为这些物质构成了我们每天与我们每天相互作用的所有生物体和许多非生物材料的基础。有机化学家在医学中起着至关重要的作用,创造了对各种药物必不可少的化合物。他们还开发了新型塑料,溶剂和服装染料等产品。有机化学的范围很广,涵盖了多个学科,包括药房,生物化学,材料科学,冶金等等。此外,对有机化学概念的理解在解决诸如污染控制和全球变暖等问题方面变得越来越重要。各个领域的有机化学家的贡献是显着的。复杂分子的合成方法的最新进展显着影响了科学研究的各个领域,强调了有机化学在研究中及其在现实世界中的应用中的重要性。他们的工作导致了医疗保健,农业等方面的突破。例如,在医学领域,他们开发了有针对性的癌症治疗方法,其副作用较少。有机化学家还通过使用自然过程而不是可能损害环境的合成化学物质来增加全球农作物的产量,从而发挥着至关重要的作用。此外,他们还参与生产可生物降解的塑料,该塑料为传统石化基材料提供了环保替代品。这些可生物降解的塑料使用较少的能量,可以通过微生物迅速堆肥或分解。在药房中,有机化学为新药候选者提供较少的副作用,有助于减少对麻醉止痛药的依赖,同时减轻慢性病等慢性病或癌症。有机化学涉及各种反应,包括合成,分解和单个位移。有机化学反应涉及复杂的过程,其中不同的元素相互相互作用。I型和II反应具有不同的特征,由于催化剂的存在,前者不需要氧气,而后者则需要氧气。此外,还有各种类型的水解反应,例如水合和分解,可以归类为替代,分解和消除反应。虽然不可能列出由于无限可能性引起的所有可能反应,但我们提供了下面的一些例子: *均匀反应:当分子分解并形成新的反应时发生 * hydronium离子交换反应:在分子之间转移蛋白质时形成了proton时形成的水解反应 *当水反应之间发生:当水反应时发生:当水反应时发生触发时(氧化物或氧化物),或者氧化氧化物或氧化物的反应时)(氧化物),氧化物或氢氧化物(氧化物)时)获得的电子,具有两个亚型:单电子还原(I型)和双电子还原(II型)这些反应对于理解化学动力学至关重要。单位位移反应通常涉及芳香族化合物上的亲核位移,并且可以通过背面或前侧攻击发生。α氢消除反应在从α碳原子的水中从有机分子中去除氢原子时,就会发生α氢反应,而在诱导电子吸引电子绘制的位点上,β消除是通过前侧攻击发生的。 卤化反应涉及用另一种代替卤离子,可以分解为单个位移和替代反应。 有机化学通过各种应用(例如制造塑料,肥料,某些药物和帮助癌症治疗)在日常生活中起着重要作用。 它也用于通过破裂石油生产车辆和其他机械的燃料。 此外,我们周围都存在有机化合物,因此必须了解它们的特性至关重要,因此我们可以负责任地利用它们来创造一个更舒适的世界。α氢反应,而在诱导电子吸引电子绘制的位点上,β消除是通过前侧攻击发生的。卤化反应涉及用另一种代替卤离子,可以分解为单个位移和替代反应。有机化学通过各种应用(例如制造塑料,肥料,某些药物和帮助癌症治疗)在日常生活中起着重要作用。它也用于通过破裂石油生产车辆和其他机械的燃料。此外,我们周围都存在有机化合物,因此必须了解它们的特性至关重要,因此我们可以负责任地利用它们来创造一个更舒适的世界。有机化学是现代生活的骨干,影响了从粮食生产到医学开发的一切。必须掌握有机分子如何相互作用,以对自己的健康和亲人做出明智的决定。加入我们的旅程,探讨该领域在塑造过去和未来的世界上的重要贡献。一些关键概念包括: - 脂肪含量的烃,其定义,类型和示例 - 命名法,其重要性和命名系统 - 元指导组和Ortho para指导群体 - 核寄生者和亲电的群体 - 介绍,示例,示例和应用程序中的其他关键主题包括有机化的化学反应 - 副派系,构成了核定的核定反应,苯的反应 - 甲苯和苯的硝化 - 苯的卤化,其激活和机制 - 弗里德尔 - 克制酰化和烷基化,它们的机制和实例 - 苯的磺化 - 基于其结构和属性的苯,其定义,机制,机制,机制,机制和解决的有机化合物。它们源自煤炭,植物,动物,天然气和其他来源。有机化学在我们的日常生活中起着重要作用,影响了我们吃的食物,我们穿的衣服,服用的药物以及我们在家中使用的物品。有机化学的影响最直接在我们消耗的食物中。蛋白质,脂肪和碳水化合物都由提供能量和养分的有机化合物组成。塑料来自合成聚合物,而木材主要由纤维素组成。大米,小麦和土豆等食物主要由淀粉组成,人体将其转化为葡萄糖以获得能量。在鱼,肉,鸡蛋和豆类中发现的蛋白质对于建造和修复组织以及代谢至关重要。理解这些概念对于欣赏有机化学在我们日常生活中的作用及其对现代社会的意义至关重要。有机化合物在我们的日常生活中起着至关重要的作用,从营养和食物保存到衣服和建筑材料。这些化合物由甘油和脂肪酸组成,这些甘油和脂肪酸有助于保持身体的温暖并储存能量。除了营养重要性外,有机化合物还用作农药和除草剂来保护作物。食品防腐剂(如苯甲酸钠)可以防止微生物生长,而食用颜色和人造甜味剂可以增强风味和外观。天然纤维(如棉,羊毛和丝绸)由有机化合物组成,包括纤维素和蛋白质。纤维素是在植物细胞壁中发现的多糖,使这些纤维具有独特的特性。尼龙,聚酯和丙烯酸等合成纤维也由有机化合物制成,提供耐用性和多功能性。在纺织工业中,合成纤维由于其寿命长和对收缩的抵抗而受欢迎。在构造中,使用木材,塑料和油漆等有机化合物来建造和装饰房屋。医学也从有机化学中受益匪浅,使用有机化合物开发了许多挽救生命的药物。抗生素(如阿莫西林和青霉素)已彻底改变了细菌感染的治疗。抗癌药,溃疡药,心脏药物,抗抑郁药和维生素都是改善人类健康的有机分子的例子。控制体内各种生物学过程的维生素和激素也是有机化合物。维生素C对于组织愈合和酶功能至关重要,而胰岛素则调节血糖水平。有机化学对教育产生了重大影响,纤维素被用于生产纸张。有机化合物在我们的日常生活中起着至关重要的作用,从教育到个人护理产品,甚至是洗涤剂等家居用品。通过有机化学创建的这些化合物构成了许多日常物体的基础。例如,肥皂是通过用坚固的碱化油和脂肪制成的,而香水却依靠酯和醇来散发出不同的气味。此外,聚合物,PVC,三聚氰胺和Teflon之类的聚合物由于其独特的特性而被广泛使用,例如灵活性和对化学物质和热量的耐药性。由于这些化合物被编织成现代生活的各个方面,因此它们强调了有机化学在塑造我们世界中的重要性。通过探索有机化合物的应用,我们可以深入了解化学对我们日常生活的变革力量及其推动未来科学突破的潜力。