图 1. 代表在 (a) 黑暗条件下使用 (b) 垂直极化和 (c) 水平极化、λ avg = 528 nm 照明生成的薄膜的 SEM。 (d) 透视 AFM 代表使用两个正交极化 λ avg = 528 nm 照明输入(总强度的 0.7 部分在一个极化中提供,其余部分在正交极化中)通过单个步骤由无机向光性生长生成的薄膜。
将 x 分解为 x = x ∗ + xe,其中 x ∗ 在 p 1 , p 2 , p 3 的范围内 – 即,其中 x ∗ = α 1 p 1 + α 2 p 2 + α 3 p 3 是 α 1 , α 2 , α 3 的某个合适选择 – 并且 xe 与 p 1 , p 2 , p 3 的范围内正交。确保给出 x ∗ 和 xe,并展示您的工作/描述您的方法,即使您使用计算机来帮助计算。
常见的通用分割方法会因照明突然变化而受阻。由于打开灯而导致的亮度显著增加以及物体投射的阴影通常会导致这些方法产生错误的分类。为了实现照明不变分割,本文讨论的共线向量模型从局部像素邻域构建 RGB 颜色向量。亮度变化只会对这些向量的长度产生标量值的影响。因此,可以采用正交距离测量来确定照明不变下的局部颜色相似性。在存在加性噪声的情况下,通过找到从向量到未知无噪声信号的最小正交距离来估计向量共线。距离最小化可以定义为最小特征值问题。该最小值被纳入贝叶斯框架,从而允许最大化决策的后验概率 (MAP)。将结果值与静态和自适应阈值进行比较。分类标签被认为是通过马尔可夫随机场 (MRF) 采样的,以对像素相互依赖性进行建模。相应的能量函数定义为证据在空间邻域上的积分。这会导致前景蒙版的空间紧凑性和平滑边缘。使用 PETS 2001 数据集和特定照明测试集来衡量性能。
在这里,我们研究解码通过未知量子态传输的信息的问题。我们假设 Alice 将字母表编码为一组正交量子态,然后将其传输给 Bob。然而,介导传输的量子通道将正交状态映射到非正交状态,可能混合。如果没有准确的通道模型,那么 Bob 收到的状态是未知的。为了解码传输的信息,我们建议训练测量设备以在鉴别过程中实现尽可能最小的误差。这是通过用经典通道补充量子通道来实现的,经典通道允许传输训练所需的信息,并采用抗噪声优化算法。我们在最小误差鉴别策略的情况下演示了训练方法,并表明它实现了非常接近最优误差概率。特别是,在两个未知纯态的情况下,我们的建议接近 Helstrom 界限。对于更高维度中的大量状态,类似的结果也成立。我们还表明,减少训练过程中使用的搜索空间可以大大减少所需资源。最后,我们将我们的建议应用于相位翻转通道达到最佳误差概率的准确值的情况。
成功翻译许多体外工程组织需要足够的血管化。本研究介绍了一种新型胶原蛋白衍生物,该衍生物含有多种识别肽,用于基于分选酶 A (SrtA) 和因子 XIII (FXIII) 的正交酶交联。SrtA 介导的交联能够在本体水凝胶中快速共同设计人类血液和淋巴微毛细血管和中尺度毛细血管。凝胶硬度的调节决定了新血管形成的程度,而血液和淋巴毛细血管的相对数量则重现了最初植入水凝胶的血液和淋巴内皮细胞的比例。生物工程毛细血管很容易形成管腔结构,并在体外和体内表现出典型的成熟标志物。次级交联酶因子 XIII 用于将 VEGF 模拟 QK 肽原位束缚到胶原蛋白上。这种方法支持在没有外源性 VEGF 的情况下形成血液和淋巴毛细血管。正交酶交联进一步用于生物工程水凝胶,其具有促血管生成和抗血管生成特性的空间定义聚合物组成。最后,基于微凝胶二次交联的大孔支架可实现独立于支持成纤维细胞的血管形成。总体而言,这项工作首次展示了使用高度通用的胶原蛋白衍生物共同设计成熟的微尺寸和中尺寸血液和淋巴毛细血管。
电动机皮层最突出的特征是在移动执行过程中激活其激活,但是当我们简单地想象在没有实际电动机输出的情况下移动时,它也很活跃。尽管进行了数十年的行为和成像研究,但在秘密运动影像过程中,运动皮层中的特定活动模式和时间动力学与运动执行过程中的特定活动模式和时间动力学如何相关。在这里,我们记录了两个人的运动皮层,他们在脊髓损伤不完全的情况下保留了一些残留手腕功能,因为他们既进行实际和想象中的等距腕部伸展)。我们发现,我们可以将人口活动分解为三个正交子空间,在动作和图像中,一个人群同样活跃,而其他人只有在单个任务类型(Action或Imagery)中活跃。尽管它们居住在正交神经维度,但动作唯一和唯一的图像子空间包含了一组非常相似的动态特征。我们的结果表明,通过将与电机输出相关的组件和/或反馈重新定位为独特的输出无效图像子空间,Motor Cortex保持与执行期间相同的总体人口动态。
定量SEM/EDS分析的原位标本方向方法的开发和验证粘土Klein 1*,Faith Corman 1,Joshua Homan 1,Brady Jones 1,Brady Jones 1,Abbeigh Schroeder 1,Heavenly Duley 1和Chunfei Li 11。宾夕法尼亚州克拉翁大学,化学,数学和物理系,美国宾夕法尼亚州克拉里昂 *通讯作者:clay.w.klein@gmail.com定量分析具有扫描电子/能量分散式X射线/能量的标本元素组成的元素组成,以确保X射线光谱(SEM/EDIMENS)不需要一定的情况。错误。特别是,为了准确的定量EDS分析,标本表面必须足够平坦,并且与SEM的电子束具有正交性[1,2]。在本演示文稿中,我们报告了一种在SEM中,肉眼看不见的足够平坦的微观表面的方法的开发和验证,使得表面与传入的电子束是正交的。该方法基于使用多个SEM图像来测量两个点之间的距离的变化,而两个点之间的界线垂直于SEM倾斜轴,在不同的倾斜角度上。该方法利用了多个SEM图像和测量值,它为我们当前在开发和统计上分析试样方向过程中使用的工具提供了一个良好的测试基础,比以前的方法更有效,更精确[3]。SEM具有两个操作,可以实现对象的原位操纵:旋转和倾斜。要应用该方法,我们使用了以随机旋转和倾斜角度定向的宏观平坦样本。2。[4]。旋转操作通过平行于传入的电子束(定义为轴)的轴的角度旋转样品,而倾斜操作则通过围绕轴(轴)垂直于旋转轴的角度倾斜样品。对于以某个任意角度倾斜的平面,我们将适当的角度定义为 - 参数空间中的坐标,使得平面的表面与电子束正交。一旦确定了足够平坦的平面,我们可以通过以下步骤确定适当的角度:(1)以增量旋转角度进行一系列SEM图像,((2)用一定角度倾斜样品,(3)重复(3)重复(1)和(4)度量,对于每个旋转角度,在斜角和直至图像中的两个特征之间的距离。可以通过形成倾斜度的比率并在每个旋转角度以测量为单位,并将理论上确定的曲线与数据拟合,从而计算出适当的角度。具有50 m的视野,每10°旋转以0°,20°和-20°旋转每10°旋转。测量是在SEM图像上进行的,如图1形成两个点之间的距离之比。在图中显示了这些测量结果的曲线使用最小二乘曲线拟合程序,确定最佳和值。图中还显示了以适当角度定向的样品的图片2;我们看到表面似乎与电子束的方向是正交的。
量子相干性是量子力学中最基本的物理资源之一,可用于量子光学[1]、量子信息和量子计算[2]、热力学[3, 4]和低温热力学[5–8]。相干量化不仅是量子理论中最重要的成分之一,也是实际应用中最重要的成分之一。最近,基于正算子值测量(POVM)的相干性资源理论在[9–11]中得到了研究。由于 POVM 是最普遍的量子测量类型,这种方法使我们可以从更根本的角度理解相干性。在参考文献[12]中,作者建立了一个一致的资源理论框架来量化相干性。在该理论中,相干性描述了量子态相对于固定正交基的叠加。从那时起,人们做了大量工作来丰富这一理论[13–18]。该框架在相干性测量方面存在一些重要的局限性。不同的相干性测度可能反映量子系统不同的物理方面[19–25]。设 H 是一个有限维希尔伯特空间,具有正交基 {| i ⟩} di =1 。在这个基中,对角密度矩阵是自由态[26],也称为非相干态。我们将非相干量子态集标记为 I ,
第2章。收费和导体(68 pp。)2.1。极化和筛选2.2。电容2.3。最简单的边界问题2.4。使用其他正交坐标2.5。可变分离 - 笛卡尔坐标2.6。可变分离 - 极性坐标2.7。可变分离 - 圆柱坐标2.8。可变分离 - 球形坐标2.9。电荷图像2.10。Green的功能2.11。数值方法2.12。运动问题(47)