帕金森运动症状与基底神经节中病理上增加的β振荡有关。虽然药理学治疗和深脑刺激(DBS)降低了这些病理振荡,并随着运动性能的提高而降低了这些病理振荡,但我们着手探索神经反馈作为内源性调节方法。我们通过植入的DBS电极实施了病理性亚丘脑β振荡的实时处理,以提供深脑电气神经反馈。患者在训练后几分钟内通过视觉神经反馈进行了视觉控制的β振荡活动。在一次单小时的训练中,β振荡活动的减少逐渐变得更强大,我们观察到了运动性能的提高。最后,即使去除视觉神经反馈后,对深脑活动的内源性控制也是可能的,这表明在短期内保留了神经反馈获得的策略。此外,我们观察到2天后学习的心理策略在没有神经反馈的情况下进行了改善。进一步训练深脑神经反馈可能会通过使用神经反馈优化的策略来改善症状控制,从而为帕金森患者提供治疗益处。
要获得癫痫发作的自由,癫痫手术需要完全切除癫痫脑组织。在术中电视学(ECOG)记录中,癫痫组织产生的高频振荡(HFO)可用于量身定制切除缘。但是,实时自动检测HFO仍然是一个开放的挑战。在这里,我们提出了一个尖峰神经网络(SNN),用于自动HFO检测,最适合神经形态硬件实现。我们使用独立标记的数据集(58分钟,16个记录),训练了SNN,以检测从术中ECOG测量的HFO信号。我们针对快速连锁频率范围(250-500 Hz)中HFO的检测,并将网络结果与标记的HFO数据进行了比较。我们赋予了SNN新型的伪影排斥机制,以抑制尖锐的瞬变并证明其在ECOG数据集中的有效性。该SNN检测到的HFO速率(中位数为6.6 HFO/ min)与数据集中发布的HFO率(Spearman'sρ= 0.81)相当。所有8例患者的术后癫痫发作结果被“预测”为100%(CI [63 100%])的精度。这些结果为建造实时便携式电池式HFO检测系统提供了进一步的一步,该检测系统可在癫痫手术期间使用,以指导癫痫发作区的切除。
嵌入式设备可以在本地实时处理生物医学信号,因此临床研究和治疗应用的生物医学信号分析可以受益匪浅。一个例子是分析癫痫患者的颅内脑电图 (iEEG) 以检测高频振荡 (HFO),这是致痫脑组织的生物标志物。混合信号神经形态电路提供了构建紧凑、低功耗神经网络处理系统的可能性,该系统可以实时在线分析数据。在这里,我们介绍了一种神经形态系统,该系统在同一芯片上结合了神经记录头端和脉冲神经网络 (SNN) 处理核心来处理 iEEG,并展示了它如何可靠地检测 HFO,从而实现最先进的准确性、灵敏度和特异性。这是首次使用混合信号神经形态计算技术实时识别 iEEG 中相关特征的可行性研究。
量子振荡现象是理解量子物质电子结构的重要工具。本文我们系统地研究了天然石墨中电子比热容 C el 的量子振荡。我们发现,单个自旋朗道能级与费米能级的交叉产生了双峰结构,这与 Lifshitz-Kosevich 理论预期的单峰形成鲜明对比。有趣的是,双峰结构是由自由电子理论中 C el / T 的核心项预测的。C el / T 代表宽度为 4.8 k BT 的光谱音叉,可以随意调谐至共振。使用巧合法,双峰结构可用于准确确定量子材料的朗德 g 因子。更一般地,音叉可用于揭示由磁场调谐的费米子态密度中的任何峰,例如重费米子化合物中的 Lifshitz 跃迁。
抽象的童年和青春期是人类寿命的关键阶段,在该阶段发生了基础神经重组过程。大量文献研究了伴随神经生理学变化,重点是人类脑电图的最主要特征:α振荡。EEG信号处理中的最新发展表明,α功率的调用度量被各种因素混淆,并且需要将其分解为周期性和周期性组件,这代表了不同的潜在脑机制。因此,尚不清楚信号的每个部分在大脑成熟过程中如何变化。使用多变量的贝叶斯广义线性模型,我们检查了在最大的开放式儿科数据集中的α活性的大约和周期性参数(n = 2529,年龄5-22岁),并在对独立验证样本(n = 369岁,年龄22岁,6-22岁)的预先检查的分析中对这些发现进行了补充。首先,复制了文献良好的年龄与年龄相关的降低。但是,在控制上的信号成分时,我们的发现为大道调节的α功率增加了与年龄相关的增加的证据。如前所述,相对α功率也显示出成熟的增加,但表明在周期性α功率和脑成熟度之间存在基本关系。随着年龄的增长,特性截距和斜率下降,并且与总α功率高度相关。因此,需要重新考虑对总α功率的年龄相关变化的早期解释,因为消除了主动突触而不是与上型间隔间的减少联系。相反,对扩散张量成像数据的分析表明,在丘脑皮层连接性的增加有关,其成熟度调整后的α功率的成熟增加与增加有关。从功能上讲,我们的结果表明,丘脑对皮质α功率的控制增加与大脑成熟过程中的提高性能有关。
第一个过渡温度T CDW1的范围从TMTE 3的低温为244K,RTE 3系列中最小的晶格参数的化合物,随着晶格参数的增加而单调增加。相比之下,较小晶格参数化合物的测量值r = dy -tm显示在较低温度t cdw2处的第二个CDW 2特征(对于系列中最重的构件,T CDW2最大)[6]。ERTE 3的初步ARPES结果确认了这张图,揭示了FS的部分形成的其他差距,靠近FS钻石部分的尖端,指向FS的钻石部分,指向一个方向[7]。在T CDW2处的电阻率的相应跳跃与在过渡时的FS量有关,对于TCDW2的最大值(T CDW1的最小值)[6]和最初FS的最小fs的最小面积和最初FS的最小面积是最大的。
全身麻醉是一种广泛使用的医学实践,每年影响超过3亿患者。尽管无处不在,但麻醉剂诱导健忘症的潜在机制仍然很少理解。本评论探讨了全身麻醉对记忆功能的影响,特别关注神经振荡在麻醉引起的记忆抑制中的作用。神经振荡,例如theta,伽马,三角洲振荡,缓慢的振荡(SO),纺锤体和锋利的波浪波纹(SWR),对于记忆形成和巩固至关重要。各种麻醉剂以影响记忆的方式调节这些振荡,即使在亚警觉浓度下也是如此。我们重点介绍了有关分子和电生理机制的最新发现,通过这些发现,一般麻醉药会影响与记忆相关的神经振荡,包括抑制突触可塑性,变化依赖于峰值的可塑性(STDP)以及跨越跨传频结合的峰值可塑性(STDP)的改变。此外,该评论还解决了年龄在与麻醉相关的记忆丧失中的重要性,老年患者特别容易受到长期认知能力下降的影响。电生理技术,例如脑电图(EEG);以及晚期的神经调节技术,例如化学遗传学和光遗传学,已经为基础上麻醉引起的失忆症的神经动力学提供了见解,但脑电图节奏与记忆障碍之间的因果关系尚未完全阐明。本综述强调了对麻醉,神经振荡和记忆之间相互作用的进一步研究的重要性。理解这些机制不仅将提高全身麻醉的理论知识,而且还有助于发展更安全的麻醉策略,以减轻术后认知功能障碍,尤其是在高风险人群中。
1 MOE的关键实验室,用于凝结物质的非平衡合成和调节,Shaanxi省级高级材料和介质物理学的主要实验室,XI'AN JIAOTONG大学,XI'AN,XI'AN,710049,710049,中国2个国家主要的实验室,是纳尼型纳米型材料和量化量的纳米级材料和量子量的国家主要实验室, 200433,中国3个州制造系统工程钥匙实验室,西安·贾东大学,西安,710049,中国4号材料材料纳米结构研究中心,国家材料科学研究所,1-1-1-1-1-1-1-1-1-1-1-1-15-0044,日本305-0044,日本5日本6东南大学物理学院量子材料和设备的主要实验室,211189,中国南京7 Zhangjiang Fudan International Innovation Center,Fudan University,上海2011年
人们能够从行动中获得重要的社会信息的能力受到因素的影响,包括运动的熟悉程度,运动图像的能力,身体之间的相互作用及其数量和特性位置(Calvo-Merino等,2005; Cross等,2006; Cross等,2006; Gardner et; Gardner等,2015; Menicucci etal。2020; Wur。枕骨皮层中的腹腔外体积和锻造形状身体区域有选择性地作用于对人体的感知,其形状,姿势和运动,但不适合其他物体(Downing&Peelen,2016)。此外,枕叶颞皮层仅在彼此社交互动中观察人体时才激活(Abassi&Papeo,2020; Wurm&Caramazza,2019年)。舞蹈和音乐训练以多才多艺的方式参与运动感知,执行和体现的互动,以及舞蹈专业知识修饰了大脑的结构和功能(例如,Foster Vander Elst et al。,2023; Giacosa et al。; Giacosa et al。,2016; 2016; 2015; Karpati et al。在舞蹈中,这些变化被证明发生在多个大脑区域,包括前甲,小脑,小脑和后时间区域与动作观察和执行以及美学上的欣赏(Calvo-Merino等,2006; Cross等,2009; Kirsch等人,2015年)。在音乐中,这些变化与负责电机控制和听觉处理的大脑区域以及电机网络与听觉系统之间的连通性有关(Olszewska等,2021,以进行审查)。艺术体验,例如观看舞蹈,可以创造强烈的情感和持久的回忆。Recently, interest has increased in measuring brain processes in real-world interactional settings, including classrooms, theatres, concerts and museums (Chabin et al., 2021 ; Dikker et al., 2017 , 2021 ; Dolan et al., 2018 ; Tervaniemi et al., 2022 ) as opposed to the conventional artificial viewing situations and simplified stimuli used in isolated laboratories (例如Abassi&Papeo,2020; Calvo- Merino等,2005; Cracco等,2021; Wurm&Caramazza,2019年)。由复杂的电影,舞蹈或音乐引起的大脑反应无法从此类人工设置和简化任务中收集的数据轻松推断出来(Bartels&Zeki,2004; Jola&Grosbras,2013; Nastase等,2020; Zhang et al。,2021)。此外,观众和表演者在现场表演过程中的共同存在和相互关系不能在视频录制的性能中概述。例如,当新手观众观看现场舞蹈与视频记录的舞蹈中观看现场舞蹈时,在新手观众中,运动皮质脊髓兴奋性会得到增强(Jola&Grosbras,2013年)。情感过程与
螺旋自旋结构是磁性诱导的手性的表达式,纠缠了材料1-4中的偶极和磁性。最近发现的螺旋范德华多表情到超薄限制,在二维5,6中提高了大手性磁电相关的前景。但是,到目前为止,这些耦合的确切性质和大小尚不清楚。在这里,我们对exfoliated van der waals多效率的对映射结构域的动力学磁电耦合进行精确测量。我们使用集体电磁模式在共振中评估了这种相互作用,并使用超快光学探针套件捕获了其振荡对材料偶极和磁性阶的影响。我们的数据显示,在Terahertz频率上具有巨大的自然光活性,其特征在于电化和磁化成分之间的正交调制。第一原理的计算进一步表明,这些手性耦合源于非共线自旋纹理与相对论自旋 - 轨相互作用之间的协同作用,从而使晶格介导的效应具有实质性增强。我们的发现突出了相互交织的订单的潜力,使其在二维极限内启用独特的功能,并为以Terahertz速度运行的范德华磁电机设备的开发铺平了道路。