摘要。收音机和手机使用振荡载体信号的频率调制(FM)来可靠地传输多路复用数据,同时拒绝噪声。在这里,我们使用遗传编码的蛋白振荡器(GEOS)作为电路中的载波信号来建立该范式的生化类似物,以实现单细胞数据的连续实时FM流。GEOS是由进化多样的思想家庭ATPase和激活因子模块构建的,这些模块在人类细胞中共表达时会产生快速的合成蛋白振荡。这些振荡用作单细胞载体信号,频率和振幅由GEO组件水平和活动控制。我们系统地表征了169个ATPase/Activator Geo对和具有多个竞争激活剂的工程师复合GEO,以开发一个用于波形编程的全面平台。使用这些原理,我们设计了对细胞活性调节地理频率的电路,并使用校准的机器学习模型解码其响应,以证明单个单元中转录和蛋白酶体降解动力学的敏感,实时FM流。GEOS建立一个动态控制的生化载体信号,解锁抗噪声的FM数据编码范式,为动态单细胞分析开辟了新的途径。简介。细胞动态调节不同时间尺度的基因表达,蛋白质定位和信号传导状态,以执行必不可少的生物学功能1-4。虽然基因组,转录组和蛋白质组学方法可以提供单细胞态5-8的快照,但实时遵循单个细胞的轨迹的能力对于理解动态细胞和生物体行为如何编码和功能1,9,10至关重要。这些单细胞动力学通常是使用荧光记者在显微镜下进行跟踪的,其强度或定位为您感兴趣的数据提供了代理10-16。虽然功能强大,但这些工具对扩展单细胞动力学和数据聚合的扩展跟踪构成了挑战,因为任意信号强度在仪器上各不相同,并且对光漂白和噪声17敏感。此外,传统基于荧光的工具生成的信号缺少元数据来识别信号的基本细胞来源,从而使密集的细胞环境中重叠信号的分离变得困难。
量子光力学的大多数研究都集中在单个振荡器上,展示了基态冷却和量子压缩等量子现象。但集体量子行为并非如此,其中许多振荡器作为一个整体运行。虽然这些集体动力学是创建更强大的量子系统的关键,但它们需要对具有几乎相同特性的多个振荡器进行极其精确的控制。
激光直接写作采用多光子3D聚合化是一种科学和工业工具,用于各个领域,例如微观,医学,超材料,可编程材料等,由于高吞吐量和良好的特征融合到数百nm。技术适用性的某些局限性从照片牙质特性中出现,但是随着光激发条件的变化,任何物质修改都会强烈影响其可打印性。在这里,我们使用低峰功率激光振荡器提出了非波长的3D聚合。使用高脉冲重复率和快速激光直接写作,用于从SZ2080 TM照相抗体中推进添加剂制造,而无需任何照相机。波长为517 nm,780 nm和1035 nm的波长被证明适合于高达10 5 µm/s的写作速度,也适用于产生300 nm聚合的特征。杂交材料中有机无机比率的变化会导致动态制造窗口的变化和减少,但并没有禁止光结构。由于局部加热实现有效的3D打印,因此可以实现每个焦点的控制能量沉积。这种空间选择性的光化交叉链接扩大了非光敏感材料的光学制造能力。
在过去的几十年里,人们对利用不同密度泛函研究量子力学系统的兴趣日益浓厚。信息论 [1] 提供的强大工具的使用受到了特别的关注,该工具旨在根据系统的代表性或特征概率分布对系统进行精确描述。这些工具的应用范围广泛,包括复杂程度各异的物理和化学对象,从少粒子系统 [2] 到结构复杂的分子 [3,4],再到多电子原子和离子 [5,6]。此外,对于给定系统,我们通常可以根据所追求的精度水平以及所考虑的变量来考虑不同的描述模型。在时间独立的量子力学框架中,对给定状态下的单粒子或多粒子系统的完整描述,需要了解相应的波函数 (r 1 , . . . , rn ),它是特征值方程的相应解
太赫兹 (THz) 时域光谱有助于深入了解半导体异质结构中的电子动力学。高场 THz 光谱探测 GaAs 量子阱 (QW) 系统的激子非线性响应,并能够在时域中测量其相干动力学。因此,THz 光谱可以让人们探索多体相互作用的基本特性以及半导体纳米器件技术的潜力。这项工作使用计算方法分析了半导体微腔中的光物质相互作用。当 QW 微腔中的激子与腔光子强耦合时,会形成一种称为激子极化子的新准粒子。本论文表明,具有光学和 THz 激发的经典耦合谐振子可用作模型来模拟激子极化子动力学及其量子相干现象。通过采用激子模式的时间相关衰减和改变光脉冲和 THz 脉冲之间的延迟,演示了激子-光子耦合系统的时间演化。由于强光物质杂化,在频谱中观察到正常模式分裂。最后,将本工作计算出的激子-极化子振荡与使用半导体布洛赫方程获得的参考计算结果进行了比较。