真菌对磷酸盐的溶解是陆地生态系统养分循环的重要过程,尤其对于植物生长发育必需的元素磷的可用性而言。磷通常以不溶性形式存在于土壤中,例如铁、铝和钙的无机磷酸盐,这限制了植物根部对其的吸收。然而,磷酸盐溶解真菌能够通过分泌有机酸和磷酸酶将可用的磷酸盐释放到环境中,将这些不溶性形式转化为植物可利用的磷酸根离子。该机制不仅在植物营养方面发挥着关键作用,而且在陆地生态系统的可持续性方面也发挥着关键作用,有助于有效的磷循环和提高农业生产力。本研究的目的是通过巴西亚马逊西部微生物收集中心的三种具有散生菌目形态特征的真菌菌株,对不同磷酸盐源的溶解能力进行分子鉴定和表征。首先,重新激活这些细胞系,并使用 2% CTAB 方法进行 DNA 提取。接下来,进行 CaM(钙调蛋白)区域的扩增,作为物种鉴定的分子标记,然后进行测序和系统发育分析。为了确保分析的稳健性,基于相关物种序列的比对,采用了最大似然法,并进行了 1000 次重复。为了评估无机磷酸盐的溶解潜力,在含有三种不同形式的不溶性磷酸盐的培养基中对分离物进行体外定性测试:磷酸铁(FePO₄)、磷酸铝(AlPO₄)和磷酸钙(Ca₃(PO₄)₂)。将真菌在28°C的恒温下培养四天。磷酸盐的溶解度通过溶解指数来量化,该指数是一个参数,表示真菌在培养基中在其菌落周围产生溶解晕的能力。该指数是根据溶解晕的直径与真菌菌落直径的比率计算得出的。系统发育分析证实,所研究的三种菌株属于 Talaromyces sayulitensis 种。在进行的测试中,Talaromyces sayulitensis 菌株表现出溶解不同来源的无机磷酸盐的高潜力,在所有测试介质中呈现溶解晕。在含有磷酸铝(AlPO₄)的培养基中观察到最高的溶解率。这些结果表明,Talaromyces sayulitensis 具有显著的溶解各种形式磷酸盐的能力,作为一种有前途的生物技术工具,它可以提高贫瘠土壤中磷的利用率,促进植物生长,并有助于可持续农业实践。
了解电热 SiC 功率 Mosfet 在短路等极端异常操作中的行为是认证的主要需求,尤其是对于关键或长寿命应用。但模拟电子元件中的短路非常困难,因为我们需要一个完全电热的多物理模型。我们还需要模拟顶部铝电极的熔化。我们使用“表观热容量”方法来模拟这种熔化,该方法考虑了潜热和熔化过程中所需的吸收能量。因此,本文首次提出了一个数值有限元模型,该模型在 2D 中完全模拟了 SiC 功率晶体管在短路状态下的动态电热行为。与现有的 1D 模型相比,该模型的几何精度提供了显着的附加值。
碳化硅 (SiC) MOSFET 凭借卓越的效率、可靠性和紧凑性,正在改变医疗设备的设计和功能。与标准的硅基功率器件不同,SiC MOSFET 具有增强的电气和热性能,包括更高的击穿电压、更低的开关损耗和更好的导热性。在医疗保健应用中,操作的准确性、能效和可靠性至关重要,这些特性非常重要。SiC MOSFET 可在 CT 和 MRI 扫描仪等医疗成像系统中提供更高的功率密度和更快的开关速度,从而提高图像质量并减小系统尺寸。可穿戴和便携式医疗设备的出色效率有助于缩小尺寸并延长电池寿命。此外,SiC MOSFET 可确保重症监护环境中的可靠性,从而提高手术器械、诊断器械和生命支持系统的效率。本文将讨论 SiC MOSFET 在改进医疗保健技术方面的重要性,以及它们与医疗保健相关的主要特性、现场应用及其对医疗保健系统的好处。随着医疗保健行业逐步采用复杂且能源密集型的技术,SiC MOSFET 有可能成为先进医疗电子产品的重要组成部分,从而推动临床和便携式护理解决方案的发展。
碳化硅(SIC)MOSFET通过提供出色的效率,可靠性和紧凑性来改变医疗设备的设计和功能。尽管基于标准的硅电源设备,SIC MOSFET可提供增强的电气和热性能,包括更高的击穿电压,较低的开关损耗以及改善的导热率。在医疗保健应用中,准确性,能源效率和操作的可靠性至关重要,这些特征是极为重要的SIC MOSFET,可以提高功率密度,并提高医学成像系统(例如CT和MRI扫描仪)的开关速度,从而提高了图像质量和减少系统大小。可穿戴和便携式医疗设备的出色效率有助于缩小尺寸并延长电池寿命。此外,确保在重症监护环境中的可靠性,SIC MOSFET提高了手术,诊断工具和生命支持系统的仪器效率。在本文中介绍了SIC MOSFET在改善医疗保健技术方面的重要性,以及它们的主要特征,与医疗保健,现场的应用以及其与医疗保健系统的好处有关。SIC MOSFET有可能成为先进的医疗电子产品的基本要素,因为医疗保健行业逐渐融合了精致和能源密集型技术,因此可以在临床和便携式护理解决方案中发展。
在儿童中,骨骼生长和发育主要受磷酸钙稳态控制。大约99%的全身性钙和80%的磷用于形成羟基磷灰石,这是骨支撑的基本成分。在Addition中,电离形式中的少量钙调节质膜的渗透性,起作用的含量和传输刺激的辅助因子。磷酸盐反过来是参与蛋白质磷酸化的细胞内阴离子。它通过高能键(ATP,CAMP)的形成和破裂来实现能量的存储和逐步转换。钙和磷的效应器官是胃肠道,骨骼和肾脏。磷酸钙稳态由甲状旁腺激素(PTH),钙三醇 - 1,25(OH)2 D,磷酸蛋白(如成纤维细胞生长因子(FGF-23))以及降低降钙素[1-3]。效应器官和调节钙代谢的因素之间的序言反应如图1所示,磷酸代谢的调节如图2所示。甲状旁腺激素被甲状旁腺分泌,以响应低钙血症。它刺激肾小管中的钙重吸收,增加骨吸收并抑制其磷酸盐的吸收。它还激活了25-羟基维生素D到钙三醇(1,25二羟基维生素D)的转化。成纤维细胞生长因子23(FGF-23)是由OS-Teocytes产生的,在较小程度上是由成骨细胞产生的。它通过影响依赖钠的磷共转运蛋白(NPTS)来抑制肾小管中的磷酸盐重吸收。FGF-23进一步降低了1α-羟化酶的表达并增加了24-羟化酶的表达,从而降低了循环中1,25(OH)2 d的浓度(图2)[2,3]。钙化三醇,也称为二氢胆石钙酚,这是维生素D 3的最活跃形式,可调节钙和磷酸盐含量。在胃肠道中,它增加了钙
提交日期:2024 年 7 月 5 日; 2024 年 11 月 23 日接受;发布日期:2024 年 12 月 21 日。摘要:磷和钾是植物生命周期中必需的化学元素,被认为是农业发展的限制因素。每年,大量商业肥料被施用在田间以满足植物生产的需求,但这些投入的低效率会对环境产生负面影响。当施入土壤后,这些元素很快就会通过化学反应固定在粘土矿物中,从而难以被植物根部吸收。作为大量使用化学投入的替代方案,许多研究正致力于利用栖息在根际并具有使不溶性常量营养素可被生物利用的能力的细菌。因此,本研究的目的是对磷酸盐和钾溶解细菌、其作用机制及其作为生物接种剂的用途进行文献综述。根据本研究的提议,通过 Web of Science、SciELO、Google Scholar、Periódico Capes 和 Scopus 等数据库选出科学文章。本综述介绍了根瘤菌的用途和多功能性的相关结果,表明它们是一种具有多样化生态应用的低成本策略,可促进农业的可持续性。关键词:常量营养素;微生物;生物利用度。
快速而远得多的温室气体排放量对于防止最严重的气候后果至关重要。另外,CO 2-需要去除。由于人类的温室气体排放而引起的气候变化的后果变得越来越明显,更严重。在2015年的《巴黎气候协议》中,所有国家都同意将全球温度升至远低于2°C,并努力争取1.5°C这些温度限制需要富裕国家,例如欧盟的成员国,包括荷兰,最晚在2050年之前不再为温室气体排放做出贡献。这就是为什么在欧洲气候法中同意到2050年是“气候中立”的原因,这意味着将温室气体与从大气中取出一样多。荷兰已在2019年的《荷兰气候法》中采取了这一目标,该法案还指出,荷兰在荷兰有“负排放”,或者我们从空中消除更多的温室气体。在所有温室气体中,只能从大气中取出CO 2。因此,荷兰只能借助CO 2删除在《气候法》中实现目标。本建议的主题是荷兰政府可以采取哪些原则以及采取哪些政策来撤离CO 2。
IFOSFAMIDE是一种单独使用的烷基化抗塑料剂,或用于治疗各种固体和血液学肿瘤的组合疗法(Gangireddy等,2024)。 因为它跨越了血脑屏障,Ifosfamide及其代谢产物会产生不良中枢神经系统(CNS)Symp Tom,包括头痛,运动障碍,动作障碍,尿失禁,搅拌以及记忆或取向的变化(Ajithkumar等人,Ajithkumar等人,2007年; Pellacani和Eleftheriou,2020年)。 施用Ifosfamide可能会发生限制剂量的中枢神经系统和肾脏毒性,这在极端情况下可能导致肾衰竭和致命的脑病。 文献报告的Ifosfamide毒性率的发生率在1.4%至60%范围内,CNS神经毒性为10%至40%(Dalton,2022; Mashhadi等,2011; Pellacani&Eleftheriou,2020)。 护士在服用抗肿瘤药(例如Ifos Famide)时必须评估患者的潜在不良反应和并发症(Corbett,2023年)。 实验室测试通常下令在管理IfosFamide时监视肾脏变化。 但是,护理人员并未常规评估通常从记忆,人格或集中度的细微变化开始的早期中枢神经系统症状,但可以迅速发展为明显且潜在的致命性脑病。IFOSFAMIDE是一种单独使用的烷基化抗塑料剂,或用于治疗各种固体和血液学肿瘤的组合疗法(Gangireddy等,2024)。因为它跨越了血脑屏障,Ifosfamide及其代谢产物会产生不良中枢神经系统(CNS)Symp Tom,包括头痛,运动障碍,动作障碍,尿失禁,搅拌以及记忆或取向的变化(Ajithkumar等人,Ajithkumar等人,2007年; Pellacani和Eleftheriou,2020年)。施用Ifosfamide可能会发生限制剂量的中枢神经系统和肾脏毒性,这在极端情况下可能导致肾衰竭和致命的脑病。文献报告的Ifosfamide毒性率的发生率在1.4%至60%范围内,CNS神经毒性为10%至40%(Dalton,2022; Mashhadi等,2011; Pellacani&Eleftheriou,2020)。护士在服用抗肿瘤药(例如Ifos Famide)时必须评估患者的潜在不良反应和并发症(Corbett,2023年)。实验室测试通常下令在管理IfosFamide时监视肾脏变化。但是,护理人员并未常规评估通常从记忆,人格或集中度的细微变化开始的早期中枢神经系统症状,但可以迅速发展为明显且潜在的致命性脑病。
农业强化的影响而不考虑农业土地的可持续性,因此即使粮食需求日益增加,土地也变得无生产。本文旨在揭示Rizosphere微生物瘤工程提高土壤健康和粮食作物生产率的能力,并了解Rizosphere微生物瘤在支持可持续农业方面的障碍和机会。使用的研究方法是叙事文献综述。rizosphere微生物瘤工程可以通过减少化学输入来增加盈利的微生物种群,但在提高粮食作物生产力和土壤健康方面仍然有效,并在支持可持续的农业中发挥作用。必须明智地安排肥料和农药的使用,以免损害肠际微生物瘤和土壤营养。
glikosfingolipids(GSL)是细胞膜的关键组成部分,需要维持膜的功能和流动性,并且还参与了许多重要的细胞过程,包括凋亡和耐药性。癌症的进展通常与GSL表达的变化有关,但是关于大多数GSL物种的分子机制的详细研究仍然有限。早期的研究表明,半乳糖酰二酰胺(Galcer)及其合成酶,陶瓷半乳糖替代酶(UGT8)在乳腺癌(BC)和耐药性(Sheepdog等人 dival。 div al。 div al。2013)。ugt8是肿瘤侵袭性的关键指标,也是预测乳腺癌肺转移酶的潜在标志物(Dziegiel等人。2010)。Galcer充当抗遗传分子,增加了化学疗法诱导的乳腺癌细胞对凋亡的抗性。然而,从galcer到凋亡调节的确切信号通路尚不清楚。先前发现,Galcer的积累与促凋亡蛋白的表达降低相关,而mRNA TNFR1B/CD120B和TNFR9/CD137以及抗凋亡mRNA和BCL2蛋白的表达增加。为了进一步研究Galcer和这些凋亡基因之间的调节轨迹,使用了两个细胞模型:一种过表达模型,其中MCF.7细胞被UGT8和Galerce隔离了,以及使用三重阴性细胞系MDA-MB-231的功能丧失模型,其中UGT8和Galcer与CRIRPR/Cerpr/cers9沉默了。我们的结果表明,在两个细胞模型中,TNFRSF1B和TNFRSF9的mRNA水平的变化是Galcer变化这些基因启动子活性变化的结果。在过表达模型中,增加的Bcl2 mRNA是启动子活性增加的结果,而在模型损失模型中,Bcl2水平的降低与mRNA稳定性降低有关。这些转录变化与关键转录因子和凋亡调节剂的变化有关,p53。在负细胞系中,观察到p53水平升高,p53的生长有助于凋亡的严重程度,通过治疗阿霉素的治疗证实,在总p53水平及其磷酸化时观察到变化。通过使用siRNA抑制mRNA p53表达并测试这些基因的启动子和mRNA水平的活性,还通过抑制mRNA p53表达来调节BCl2,TNFRSF1B和TNFRSF9基因的直接参与。p53表达调控是通过MDM2蛋白发生的,MDM2蛋白在阳性细胞系中相对于Galcer过度氧化。反过来,MDM2受该法案的调节,该行为在含有galcer的细胞系中激活。最终发现,通过与表皮生长因子(EGFR)受体的直接或间接相互作用,Galcer以独立于配体的方式激活该受体。这种激活导致了文件跟踪的激活,这导致对阳性细胞系中的凋亡和药物相对于galcer的抗性。