摘要在未来的智能家居中,机器人有望处理日常任务,例如烹饪,取代人类的参与。为机器人自主获得此类技能是高度挑战的。因此,现有方法通过通过监督学习来控制真实的机器人和培训模型来解决此问题。但是,长途任务的数据收集可能非常痛苦。为了解决这一挑战,这项工作着重于从人类视频中生成动作序列的任务,展示了烹饪任务。通过现有方法为此任务而生成的动作序列的质量通常不足。这部分是因为现有方法不会有效地处理每个输入模式。为了解决此问题,我们提出了Avblip,这是一种用于生成机器人动作序列的多模式LLM模型。我们的主要贡献是引入多模式编码器,该编码器允许多种视频,音频,语音和文本作为输入。这使下一个动作的生成可以考虑到人类的语音信息和环境产生的音频信息。结果,在所有标准评估指标中,所提出的方法优于基线方法。
摘要:赭曲霉毒素 A (OTA) 是一种众所周知的霉菌毒素,广泛分布于食品和饲料中。真菌基因组测序对于识别已知和新化合物的次级代谢物基因簇非常有用。对 A. steynii、A. westerdijkiae、A. niger、A. carbonarius 和 P. nordicum 中 OTA 生物合成簇的比较分析表明,在五个结构基因 (otaA、otaB、ota、otaR1 和 otaD) 中,OTA 簇的组织具有高度的同源性。此外,最近对黑曲霉 OTA 产生菌进行的详细比较基因组分析发现了一个环化酶基因 otaY,它位于 otaA 和 otaB 基因之间的 OTA 簇中,编码的预测蛋白质与 SnoaL 的结构域高度相似。这些蛋白质已被证明能催化链霉菌中产生的聚酮抗生素生物合成中的闭环步骤。在本研究中,我们证明了在 OTA 允许条件下 A. carbonarius 中环化酶基因的上调,这与其他 OTA 簇基因的表达趋势及其在 OTA 生物合成中的作用一致,即通过完全基因缺失。我们的研究结果首次指出了环化酶基因参与了 OTA 生物合成途径。它们代表着对 A. carbonarius 中 OTA 生物合成分子基础的理解向前迈出了一步。
ochratoxin a(OTA)是一种主要由曲霉和青霉物种产生的霉菌毒素,对食品安全,动物健康和人类福祉构成了重大威胁。尽管进行了广泛的研究,但OTA生物合成,污染,代谢/降解和微生物相互作用的许多方面仍未得到解决。本期特刊将探讨OTA检测,(生物)降解和缓解策略的最新进展,重点是微生物生产者,排毒机制和创新的生物控制方法。我们欢迎涵盖广泛主题的原始研究和评论文章,包括产生OTA的真菌的分子生物学,微生物群在OTA降解中的潜在作用,新颖的检测技术和风险评估模型。特别鼓励讨论OTA对食品和环境系统的影响以及减少OTA污染的新兴策略的贡献。通过将微生物学,分子生物学,酶学,毒理学和食品科学的专家汇集在一起,该特刊将提高我们对OTA的理解并促进更安全的食品生产实践。
本文介绍了一种新型一阶全通滤波器配置。所提出的全通滤波器配置采用两种配置,即基于 VDVTA 和 OTA 的一阶全通滤波器配置。所提出的第一种配置采用单个 VDVTA 和一个接地电容器,而所提出的第二种配置采用两个 OTA 和一个接地电容器。所提出的两种配置都是完全电子可调的,其品质因数不依赖于可调极点频率范围。所报告的配置具有较低的主动和被动灵敏度,并且功耗较低,电源电压非常低,±0.85 V,偏置电压为±0.50 V。使用 0.18 µm CMOS 技术工艺参数验证了所提出的 VDVTA 和两个基于 OTA 的一阶全通滤波器配置的 PSPICE 模拟。
开发牙本质指标教育机构:asahi大学和Tsurumi University×制造商兼医疗设备供应商:OTA City Media Co.×Smes:Waki City Inc.:Waki Factory Inc.,Nissin Kogyo Co. Ltd.修饰安装造口的孔的大小利用医疗设备制造商:B。Braun Aesculap Japan Co.,Ltd。×SME×SME在Ota City:Nissin Denki Co.,Ltd.开发用于粉末修改的自动加工设备,为新材料教育机构Toyohashi Toyhasi Technology×SME在OTA City:KD-Clout Co.
《 2022年CHIPS与科学法》正式建立了NSF的技术,创新和伙伴关系(TIP)局。它还为NSF提供了使用其他交易协议(OTA)进行提示局的活动的权力。OTA通常用于推进新技术以及研究,开发和示范项目。尽管OTA受联邦财政法律的约束,但它们不受统一的指导和联邦收购法规的约束,该法规管理赠款,合作协议和合同。因此,代理商必须通过全面的政策,流程和程序来开发严格的控制环境,以确保对使用OTA的适当监督和问责制。我们进行了这项例行活动,以告知NSF,因为它制定了自己的OTA政策和程序,因此OTA固有的潜在风险。
抽象的操作跨传输放大器(OTA)是模拟电路和系统中最关键的块。随着灾难性短通道效应的互补金属氧化物半导体(CMOS)晶体管在深纳米系统下的晶体管,微电学科学家的侧重于设计基于非西硅材料的超细胞性奥塔斯。在过去的几年中,具有惊人的电气和物理性能的全面碳纳米管局部效应晶体管(GAA-CNTFET)吸引了纳米电子研究人员的广泛关注,这是代表高性能纳米级OTA的潜在平台。在这方面,这项工作旨在根据10 nm GAA-CNTFET技术节点提出一个超米型超宽带OTA。在超级尺寸的GAA-CNTFET晶体管的弹道传输操作中,提出的OTA受益,该尺寸可提供优质带宽(2.88 GHz)以及合适的功率消耗(44.8 L W)。所提出的OTA显示在1 V电源电压下的64.5 dB开环增益和59 dB的共同模式排斥比。此外,由于使用间接反馈补偿方法的利用,拟议的基于GAA-CNTFET的OTA呈现了适当的相位边缘(61),并带有较小的补偿器电容器。提到的性能指标仅占据0.198 L m 2的物理区域,提出的GAA-CNTFET OTA有可能被视为基于纳米级CMOS的OTA的替代方法。
在七个州和哥伦比亚特区。数百名代表本报告评估的一系列科学、法律和道德利益的个人通过采访、提供书面材料和批评初稿与 OTA 合作。OTA 在一个顾问和审阅者小组的协助下编写了本报告,这些顾问和审阅者因其专业知识和对评估所涵盖的问题的不同观点而入选。这些权威人士来自学术界、行业和专业协会,以及联邦、州和地方机构。他们包括科学、执法、法医和法律界的成员。OTA 感谢这些个人的贡献;与所有 OTA 报告一样,内容的责任完全由 OTA 承担。
摘要 — 运算跨导放大器 (OTA) 是许多电子电路(如模拟滤波器和数据转换器)的重要组成部分。由于功耗低,低于 1V 的模拟电路在物联网 (IoT) 应用中越来越受欢迎。此外,人们还在探索基于数字的 OTA,以实现高能效。本文涉及一种基于反相器的 OTA 的实现,该 OTA 采用自偏置技术,通过实现差分差分放大器在共模频带中工作,以减轻在弱反相下工作的不必要变化。OTA 采用 180 nm CMOS 技术设计,由 0.9 V 电源供电。在 GBW 接近 36.66 MHz 的情况下实现了 52.22 dB 的直流增益。对于 10 pF 的负载电容,功耗为 203.71 µW。索引术语 — OTA 反相器、差分放大器、自极化、低压。
国防部 (DOD) 有权使用一种称为其他交易协议 (OTA) 的签约机制,该机制不受某些联邦采购法律和要求的约束。国防部可以将 OTA 授予单个组织或财团(专注于特定技术领域的组织团体)。国防部授予财团的奖项份额很大。从 2019 财年到 2021 财年,国防部向财团颁发了超过 240 亿美元的 OTA 奖项,用于原型设计工作,其中包括开发 COVID-19 疫苗。这些义务占国防部所有原型 OTA 金额的近三分之二。此外,在这 3 年期间获得 OTA 奖项的 28 个财团中,大多数成立于 2014 年之后,由四个组织之一管理。