征文:教育和教育研究中的人工智能国际研讨会 (AIEER) AIEER 2024 教育和教育研究中的人工智能国际研讨会是第 27 届欧洲人工智能会议 ECAI 2024 [https://www.ecai2024.eu/] 的一部分。本次研讨会定于 2024 年 10 月 19 日至 20 日星期六和星期日举行。 研讨会范围 本次研讨会有两个不同的重点,旨在更广泛地面向教育人工智能领域。 第 1 部分。由社会科学主导的讨论,讨论人工智能应用可能有助于解决的教育中的实际问题。这包括教育和教学人工智能的研究,也包括社会科学、经济学和人文学科,包括所有学科,如教育和教学实际行动、以教育需求为重点的劳动力市场研究、教育史和相关教育文化遗产,以及决策和行为科学观点的信息预测。一方面,我们关注人工智能、教育和社会之间的联系。这包括定量和定性研究、分析教育和劳动力市场数据的数据科学方法、推荐系统的人工智能方法以及数字化学习。另一方面,我们关注如何使用人工智能来突破该领域的界限。这包括开发新方法(包括使用人工智能的方法)、寻找和提供可访问的新数据源、丰富数据等等。在这两种情况下,不同观点之间的沟通和相互理解至关重要,这也是本次研讨会的目标之一。更广泛地说,我们感兴趣的是人工智能方法如何影响教育的所有领域以及企业和劳动力市场。这包括从小学到高等教育的所有教育部门如何受到人工智能方法的影响和对其作出反应的方法。用人工智能方法设计数字化未来为教育提出了几个问题:在最广泛的层面上,立法和规范问题;在公司层面,关于投资决策以及如何保持生产力和劳动力的问题;在个人层面,关于资格以及哪些技能需要应用和可能重新学习的问题。因此,技能和资格是教育和教育研究中人工智能的核心。第 2 部分。关于可以开发哪些人工智能应用程序(以及如何开发)来解决第 1 部分提出的问题的(计算机科学主导)讨论。使用基于人工智能的系统来支持教学或学习已经发展了 40 多年,但近年来,由于 COVID-19 大流行期间电子学习工具的使用增加以及最近生成人工智能的爆炸式增长,其增长显着增加。我们正处于这一领域发展的关键时刻,人工智能专家和教育专家必须携手合作,以在教学过程中最佳地利用这项技术。本次研讨会旨在为展示新提案和反思这一具有如此社会意义的领域的最新技术创造空间。在第一部分中,我们特别关注人工智能的技术方面,重点关注用于内容创建(生成式人工智能)、学生分析(机器学习)、学习分析或教师可解释的人工智能方法的具体技术
巨噬细胞是肿瘤微环境的主要组成部分,它们与血液中的单核细胞有所不同,并在癌症发展中起重要作用。肿瘤相关巨噬细胞(TAMS)可以通过调节程序性细胞死亡配体1表达并与肿瘤微环境中的其他免疫细胞相互作用,从而促进肿瘤的生长,侵袭,转移和对抗编程死亡受体1治疗的抵抗。但是,如果正确激活,巨噬细胞也可以通过增强肿瘤细胞的吞噬作用和细胞毒性来发挥抗肿瘤作用。tam与免疫疗法治疗的患者的预后和耐药性不佳有关,表明巨噬细胞是癌症治疗中联合治疗的有吸引力的靶标。靶向TAM和免疫疗法的组合克服了耐药性,并在某些癌症中取得了出色的效果,这可能是未来癌症治疗的有前途的策略。在此,我们回顾了有关巨噬细胞在肿瘤发育,转移和免疫疗法中作用的最新发现。我们主要关注以巨噬细胞为中心的治疗,包括耗尽和重编程TAM的策略,这些策略代表了改善肿瘤免疫疗法效率的潜在靶标。
在过去十年中,出现了一种利用免疫系统对抗肿瘤的癌症治疗新模式。这些免疫疗法的新作用机制也给药物开发带来了新的挑战。生物标志物在免疫疗法早期临床开发的几个领域中发挥着关键作用,包括作用机制的证明、剂量确定和剂量优化、不良反应的缓解和预防以及患者丰富和适应症优先排序。我们讨论了在早期开发研究中建立一组生物标志物的预后、预测方面以及将生物标志物的变化与临床疗效联系起来的统计原理和方法。所讨论的方法旨在避免偏见并得出可靠且可重复的结论。本综述针对对免疫疗法背景下的生物标志物的战略使用和分析感兴趣的药物开发商和数据科学家。
在本文中,我们描述了一种新型 CPGES,称为地球电池扩展 II (EBE II),它使用大型表面储罐或气量计在接近大气压的条件下储存二氧化碳。这使得电池放电阶段最多可产生 260 MW e 的电力,而单靠 CPG 只能产生 2.5 MW e。此外,新的 CPGES 系统可以配置为生产可在接近大气压下升华的固体 CO2(干冰),提供 -78 °C 的散热器,可用于一般冷却目的,特别是用于从空气中低温捕获二氧化碳。反过来,这种二氧化碳可用于开发更多这样的 CPGES 系统。如果不需要散热器,可以通过增加(额外)级来优化涡轮机,从而增加电力输出而不会形成干冰。
免疫细胞功能,增加肿瘤对免疫治疗的敏感性(6,7)。小分子抑制剂利用其免疫调节特性,可以优化治疗结果,改善患者反应,为推进癌症治疗提供新的机会(8)。在癌症免疫治疗中,使用小分子抑制剂作为佐剂的概念涉及利用这些药物的免疫调节作用来增强免疫治疗的有效性。例如,小分子抑制剂可以调节肿瘤微环境,增强免疫细胞功能,增加肿瘤对免疫治疗的敏感性,并获得更好的治疗结果(9-11)。在癌症治疗中使用小分子抑制剂作为佐剂是一个快速发展和扩大的领域。通过研究小分子抑制剂如何与免疫疗法相互作用,优化治疗方案,预测患者对治疗的反应,可以为未来的癌症治疗提供更多的机会和改进。在这篇综合评论中,我们深入探讨了小分子抑制剂作为癌症免疫治疗辅助剂的不断发展的作用,探索了它们的作用机制、临床应用以及改善治疗结果的潜力。
海事事故调查报告的任何部分不得作为任何民事或行政诉讼的证据,但美国发起的行政诉讼除外。46 U.S.C.§6308.
二氧化碳羽状地热 (CPG) 发电厂可利用地质储存的二氧化碳发电。本研究介绍了一种灵活二氧化碳羽状地热 (CPG-F) 设施,该设施可利用地质储存的二氧化碳提供可调度电力、储能或同时提供可调度电力和储能——提供基载电力并使用可调度储能进行需求响应。研究发现,CPG-F 设施比 CPG 发电厂可提供更多的电力,但每日发电量较低。例如,CPG-F 设施在 8 小时内(8 小时-16 小时工作周期)产生 7.2 MW e,比 CPG 发电厂提供的电力高 190%,但每日发电量从 60 MW e-h 下降了 61% 至 23 MW e-h。 CPG-F 设施专为不同持续时间的储能而设计,其资本成本比 CPG 发电厂高 70%,但比大多数为特定持续时间设计的 CPG-F 设施高出 4% 至 27%,同时产生的电力比 CPG 发电厂多 90% 至 310%。CPG-F 设施旨在从提供 100% 可调度电力转换为 100% 储能,其成本仅比仅为储能而设计的 CPG-F 设施高出 3%。
个性化医疗代表着一种范式转变,从传统的“一刀切”方法转变为考虑个人遗传、环境和生活方式因素的更具针对性的医疗模式。本文探讨了人工智能 (AI) 与个性化药物治疗的整合,重点介绍了 AI 技术如何增强治疗计划的定制化。AI 能够分析大型复杂数据集(包括基因图谱、临床病史和生活方式信息),从而实现更精确的药物选择、剂量优化和结果预测。本文探讨了 AI 对个性化医疗的关键贡献领域,包括基因数据分析、多组学整合、预测模型和实时治疗调整。它还讨论了 AI 在提高治疗效果、减少反复试验方法和提高患者满意度方面的优势。然而,AI 的整合带来了一些挑战,例如数据隐私问题、系统兼容性需求以及解决道德问题。展望未来,本文概述了人工智能驱动的个性化医疗的未来趋势,包括人工智能技术的进步、个性化护理的扩展以涵盖更广泛的数据源,以及跨学科合作对推进研究的重要性。人工智能在个性化医疗中的前景在于它有可能通过提供更有效、个性化的治疗来彻底改变药物治疗,从而提高整体患者护理和治疗效果。
ntroduction癌症化学治疗药物与不同的指甲变化有关,这可能是由于以下提出的一种或多种机制所致:(i)对指甲矩阵的损害,导致异常指甲板的生长; (ii)指甲床伤害; (iii)损坏近端指甲折叠; (iv)异常的血液流到指甲床。[1,2] The chemotherapy‑induced nail changes frequently mimic nail changes associated with many systemic diseases such as rheumatoid arthritis, systemic lupus erythematosus, antiphospholipid antibody syndrome, psoriasis, pulmonary embolism, coronary thrombosis, cirrhosis, congestive cardiac failure, renal failure, nephrotic or nephritic综合征,贫血,糖尿病,卟啉症,周围血管疾病,肝病,营养不良,艾迪生氏病,甲状旁腺功能亢进和获得的免疫缺陷
胶原蛋白是哺乳动物中最丰富的蛋白质,广泛表达于组织器官和肿瘤细胞外基质中。肿瘤胶原主要聚集在肿瘤基质或肿瘤血管内皮下,由于肿瘤血管的结构破碎,肿瘤胶原暴露在外。通过血管的通透性和滞留性(EPR)效应,胶原结合大分子容易与肿瘤胶原结合并在肿瘤内聚集,使得肿瘤胶原成为潜在的肿瘤特异性靶点。近年来,大量研究证实,靶向肿瘤细胞外基质(TEM)内的胶原可增强免疫治疗药物在肿瘤处的蓄积和滞留,显著提高其抗肿瘤疗效,并避免严重的不良反应。本文对已知的胶原结合结构域(CBD)或蛋白(CBP)、其作用机制及其在肿瘤靶向免疫治疗中的应用进行综述,并展望未来的发展。
