氧电催化对于先进的能源技术至关重要,但由于缺乏地球上含量丰富的高活性催化剂,仍然存在极大的挑战。在此,通过纳米结构和缺陷工程,我们通过将天然存在但通常不活跃的赤铁矿 (Ht) 转化为具有氧空位 (Ov-Hm) 的赤铁矿 (Hm) 来增强其催化性能,使其成为一种高效的氧气析出反应 (OER) 催化剂,甚至优于最先进的催化剂 IrO 2 /C,在 250 mV 的较低过电位下电流密度为 10 mA/cm 2。第一性原理计算表明,Hm 表面上的降维和缺陷会局部改变吸附位点周围的电荷,从而降低 OER 过程中的势垒。我们的实验和理论见解为从天然存在且丰富的材料中开发用于 OER 应用的高活性电催化剂提供了一条有希望的途径。
摘要:CO 2的可再生电驱动电解可能是一种可行的碳中性方法,用于生产基于碳的增值化学物质,例如一氧化碳,甲酸,甲酸,乙烯和乙醇。典型的CO 2电解仪源于高功率要求,这主要是由于能量强度阳极反应。在这项工作中,我们通过在阳极处使用基于Nife的双金属催化剂并施加磁场,从而减少了阳极过电势,从而减少了整体细胞能量消耗。对于CO 2电解过程生产CO,在基于电极的电极流动电解酶中,我们证明,在超过-300 mA/cm 2的CO部分电流密度下,可以使用ANODE和/或使用磁性磁力器的Nife catalyst来实现从7%到64%的功率节省。我们将最大CO部分电流密度达到-565 mA/cm 2,在全细胞能量效率为45%的情况下,将2 M KOH作为电解质。t
由水电解产生的氢和电化学电池被广泛认为是光伏(PV)能量的长期和短期存储的主要路线。同时,PV发电的快速功率坡道和空闲周期可能会导致水分裂电化学(EC)细胞的降解。PV-EC系统中电池的启发是平稳PV功率间歇性的可行选择。值得注意的是,PV能量在昼夜循环中的扩散会降低EC细胞的功率,从而减少其过度损失。我们在理论上和实验上研究了这些潜在优势,用于在没有电源管理电子产品的情况下使用的PV,EC和电池电池(PV-EC-B)的简单平行连接组合。我们在相关的占空比中显示了PV-EC-B设备在相关的占空比中的无用操作的可行性,并探讨了PV-EC-B系统如何以较高的太阳能到氢效率运行,尽管电池造成的损失造成的损失。
在开发用于金属空气电池的阴极仍然是一个挑战。在此,我们提出了一种新的man-ganese钴丁物双金属自支撑电极作为催化剂,该电极通过水热和钙化方法在碳布上合成。电极可直接用作无粘合剂和涂层的锌空气电池阴极。使用碳布(CC)上使用氮掺杂碳的锰的原位结构可以增加碳表面上的孔,并具有更多的电化学活性位点。在碱性系统中研究了OER性能,结果表明,催化剂的电势为203 mV,电流密度为10 mA·CM -2,这比比较样品优于MNO 2 @NC/CC和CO 3 O 4 @NC/CC。此外,用MNCO 2 O 4.5 @NC/CC材料组装的锌空气电池具有出色的循环性能,并且可以稳定地循环200小时,而电流密度为5 mA·CM -2,而没有明显的电体衰变。
摘要:使用水电解的绿色氢的生产被广泛认为是最有前途的技术之一。另一方面,氧气进化反应(OER)在热力学上是不利的,需要显着的超电势才能以足够的速度进行。在这里,我们概述了重要的结构和化学因子,这些因素和化学因子影响了代表性的镍铁氧体改性石墨烯氧化石墨烯电催化剂在有效的水分分裂应用中执行。修饰原始和氧化石墨烯的镍铁素体的活性是根据其结构,形态和电化学性质彻底表征的。这项研究表明,Nife 2 O 4 @Go电极对尿素氧化反应(UOR)和水分分割应用都有影响。Nife 2 O 4 @Go被观察到,当电流密度为26.6 mA -CM -2在1.0 m尿素中,1.0 m KOH,扫描速率为20 mV s -1。为UOR提供的TAFEL斜率为39 mV dec -1,而GC/Nife 2 O 4 @Go电极到达10 mA CM -2 -2
图1。PEC设备的示意图,由具有金属背触点的半导体吸收器(左),金属计数器电极(右)和电解质环境(中心)组成。这个数字是基于国家可再生能源实验室NREL的约翰·特纳(John Turner)的描述,但在PEC文献中发现了各种各样的类似描述。一个特别有见地的例子是参考。20 by nozik&memming。横坐标表示这三个成分的空间分离,而纵坐标表示所涉及的电子能和电化学电位。电解质区域中的水平描绘了水分分裂的氧化还原电位,包括假定的过电势(将所需能量从1.23 eV,黑色增加到1.6-1.7 eV,蓝色箭头和水平)。(a):平移N型半导体,(b):平频p型半导体,(c):宽间隙p型C型沙尔科硫酸盐吸收器,带弯曲和束带隙朝向表面,以及(d):(d):AS(c),但对于狭窄的GAP吸收量。(d)中的红色“ x”表示孔达到水氧化电位的途径。
摘要基于插入电极材料的锂离子电池的能量密度已达到其上限,这使得满足对高能存储系统需求不断增长的挑战。基于硫,有机硫化物等转化反应的电极材料,涉及破裂和化学键改革的氧气可以提供更高的特定能力和能量密度。此外,它们通常由丰富的元素组成,使其可再生。尽管他们具有上述利益,但对于实际应用而言,他们面临许多挑战。例如,硫和分子有机硫化物的循环产物可以溶于液体电解质,从而导致穿梭效应和大量容量损失。氧的排放产物为Li 2 O 2,这可能导致电解质的高电荷过电势和分解。在这篇评论中,我们概述了当前改善锂硫,锂,有机硫化物和锂氧气电池的性能的策略。首先,我们总结了克服硫和有机硫化物阴极面临的问题的努力,以及提高有机硫化物能力的策略。然后,我们介绍了锂氧气电池中催化剂的最新研究进度。最后,我们总结并提供了电极材料转换的前景。
电催化是增强水分拆分设备的效率和成本效益的关键,从而有助于氢作为一种干净,可持续的能源载体的发展。这项研究着重于在碱性条件下支持氢纳米颗粒催化剂(RU NPS/TIN)的RU纳米颗粒催化剂的合理设计。AS设计的催化剂在63 mV和长期稳定性下表现出高质量活性为20 a mg-1 ru,超过了商业电解器的当前基准。结构分析突出了锡底物对RU纳米颗粒性质的有效修饰,而密度功能理论计算表明,Ru颗粒对TIN底物的强粘附力以及通过粒子支持的相互作用的氢吸附能量的有利调节。最后,我们使用RU NPS/TIN作为氢进化反应催化剂组装一个阴离子交换磁极电解酶,该催化剂在5 a cm-2下以1000 h的速度运行,超过1000小时,超过可忽略的降解,超过了商业电动器的性能要求。我们的发现有助于设计有效的催化剂,以利用粒子支持相互作用来分裂水。
大规模氢产生的进步及其通过电催化水分裂的应用在很大程度上取决于发展高度活跃的廉价且有效的电催化剂的进展,以氧气进化反应(OER),这继续带来重大挑战。在此,我们准备使用嵌入的铁(Fe)和锰(Mn)纳米颗粒的GO@Zif- 67@mnfe,上面是用含有Zeolitic Imidazy框架(ZIF-67)装饰的石墨烯(GO)上的纳米颗粒(GO)。预先准备的GO@ZIF-67@MNFE催化剂表现出显着的电催化活性,低电位的低电势仅为236 mV,目前的密度为10 mA CM - 2,小型TAFEL斜率为55.7 mV dec-1的小型TAFEL斜率为1.0 mV,并且在1.0 M KOH ElectroleTe中可耐用。此外,我们进行了一项系统研究,以使用密度功能理论(DFT)计算来研究ZIF-67,ZIF-67@MN,ZIF-67@FE和ZIF-67@FE和ZIF-67@MNFE的电催化OER活性。实验和DFT计算结果表明,将Fe和MN引入ZIF-67通过减少活化的能量屏障和加速动力学来提高OER性能。这项研究提出了一种有前途的策略和合理的设计方法,用于利用ZIF衍生物进行水分割的多金属催化剂。
可以富集各种类型的电活性微生物,形成降低电荷转移耐药性的生物心理,从而加速电子在微生物燃料电池中具有高氧化还原电势的重金属离子。微生物作为生物大道上的生物催化剂可以减少重金属还原所需的能量,从而使生物学能够实现较低的还原性发作潜力。因此,当这种重金属取代氧气(如电子受体)时,重金属的价状态和形态在生物学的还原作用下变化,从而意识到重金属废水的高效处理。这项研究回顾了生物疗法的微生物群落的机制,主要影响因子(例如电极材料,重金属的初始浓度,pH和电极电位的初始浓度),并讨论了生物降压物中的电分布以及微生物电极和重金属(电子受体(电子受体)之间的竞争)。生物心降低重金属还原中的电化学过电势,从而允许使用更多的电子。我们的研究将提高对生物座电子传输机制的科学理解,并为使用生物座净化重金属废水提供理论支持。