西奥多·罗斯福 (1858-1919) 于 1901 年至 1909 年担任美国第 26 任总统。他是社会活动主义、进步政治改革和环境保护的早期支持者。与罗斯福同属一个圈子的美国历史学家亨利·亚当斯 (Henry Adams) 这样描述这位前总统:“罗斯福比任何其他人都更纯粹。”以下摘录来自罗斯福卸任一年后在法国发表的一篇题为“共和国公民身份”的长篇演讲。该摘录被称为“竞技场中的人”演讲,因为深度参与需要勇气、技能或毅力的情况的人(而不是坐在场边观看的人)有时被称为“竞技场中的人”。阅读时,记下摘录的措辞和结构对其含义的影响。
长期以来,科学家一直对利用干细胞的能力很感兴趣。干细胞是一种未分化的、自我复制的细胞,能够在生物体内分化成分化细胞。多能干细胞,包括胚胎干细胞,能够分化成生物体内的任何细胞。科学家认为,更多地了解干细胞将使他们能够开发出各种疾病的治疗方法和潜在治疗方法。然而,许多人反对将胚胎用于科学目的。2001 年,美国总统乔治·W·布什签署了一项行政命令,限制联邦政府资助从人类胚胎中获得的干细胞研究;2009 年,美国总统巴拉克·奥巴马推翻了这项禁令。阅读时,记下关于干细胞研究的不同观点。
摘要 知识密集型任务对机器学习 (ML) 技术提出了重大挑战。常用的方法,例如大型语言模型 (LLM),在应用于此类任务时往往会表现出局限性。尽管如此,人们已经做出了显著的努力来缓解这些挑战,重点是通过知识图谱 (KG) 来增强 LLM。虽然 KG 在表示知识方面具有许多优势,但它们的开发成本可能会阻碍广泛的研究和应用。为了解决这一限制,我们引入了一个框架,用于使用完善的通用 KG 来丰富小规模领域特定知识图谱的嵌入。采用我们的方法,当链接到大量通用 KG 时,适度的领域特定 KG 可以从下游任务的性能提升中受益。实验评估表明性能显着增强,Hits @ 10 指标最高可提高 44%。这个相对未被探索的研究方向可以催化知识图谱更频繁地融入知识密集型任务中,从而产生更稳健、更可靠的机器学习实现,这比普遍存在的 LLM 解决方案更少产生幻觉。
人类的生命中有铰接的物体。对清晰的物体的综合理解,即外观,结构,物理特性和语义,将使许多研究社区受益。作为当前的符号对象理解解决方案通常是基于具有无物理属性的CAD模型的合成对象数据集,从而阻止了在视觉和机器人任务中的实现对现实世界应用的满足概括。为了弥合差距,我们提出了AKB-48:一个大规模的对象k nowledge b ase,由48个猫咪的2,037个现实世界3D 3D铰接式对象模型组成。每个对象由知识图Artikg描述。为了构建AKB-48,我们提出了快速的发音知识建模(FARM)管道,可以在10-15分钟内满足铰接对象的Artikg,并在很大程度上降低了Real
本文介绍了在人机协作背景下代表,推理和交互式学习领域知识的综合体系结构。答案集Prolog是一种非单调逻辑推理范式,用于用不完整的comsense域知识来表示和理由,为任何给定目标计算计划并诊断出意外的观察。基于ASP的推理还用于指导以前未知的动作的互动学习以及编码负担能力,动作前提和效果的公理。此学习将主动探索,反应性动作执行和人类(口头)描述的输入观察以及学习的动作和公理用于后续推理。在模拟机器人上评估了架构,该机器人协助人类在室内域中。
摘要 本论文研究了人工智能 (AI) 对瑞典劳动力市场的影响。人工智能对知识密集型劳动力的影响尤其令人感兴趣,因为这是一个受人工智能影响更大的群体。理论预测人工智能将使工作任务自动化,同时导致经济中引入新任务。利用职位空缺数据,该论文通过研究机构接触人工智能的两种不同影响阐明了这一主题。首先,研究对劳动力雇用的影响,将劳动力分为工作任务与人工智能相关的劳动力组和工作任务与人工智能无关的劳动力组。其次,测试对机构对非人工智能劳动力所需技能变化的影响。这两个问题都旨在确定劳动任务是否确实被人工智能自动化,以及是否引入了新的工作任务。结果表明,接触人工智能的企业增加了非人工智能劳动力的雇用。此外,研究发现,接触人工智能与所需技能数量的减少有关。知识密集型企业和职业与接触人工智能的关系似乎略弱。结果的解释是,一些人工智能自动化正在发生,尽管不足以引起劳动力市场的重大变化。