羟基自由基(OH)作为中央大气氧化剂,控制甲烷的去除速率,一种强大的温室气体。建议通过气候政策减少OH水平随着氮氧化物和臭氧水平的降低而降低,但这仍然不安。在这里,我们表明,由碳中立性承诺驱动的,全球均值OH浓度源自多个化学气候模型模拟,预计在2015年 - 2100 - 2100年期间每年的趋势为0.071- 0.16%。这种OH增强的主要原因是一氧化碳和甲烷浓度的急剧下降,从而减少了OH水槽。OH的增加将甲烷的寿命缩短了0.19-1.1年,随后减少了甲烷的辐射强迫。如果在很大程度上不受限制的情况下,全球OH表现出显着的减少,这会加剧甲烷的辐射强迫。因此,我们强调说,针对持续氧化能力的有针对性的排放减排策略可以使人类世的气候变化减轻。
通过TAUC图获得的样品的带隙能量值为4.38 eV,具有半导体特性。1。简介石墨烯是一种令人兴奋的材料,具有不常见的两维骨骼,其SP2-杂交碳原子的单个单分子层的六边形结构[1,2]。石墨烯由于其独特的特性[3](例如优秀的电子[4,5,6],热力学和机械性能[7,8],因此引起了许多科学和技术领域的浓厚兴趣。石墨烯具有广泛的应用,例如透明导电?lms,?ELD效应晶体管(FET),水puri?阳离子,储能设备和传感器由于其出色的物理和化学特性而引起的[9、10、11、12、13]。?首先制造单层石墨烯纳米片是通过一种称为Scotch-tape方法的剥落技术[14]和外在化学蒸气沉积。但是,这些方法的缺点是它们不适用于工业生产中的植物制造[15]。使用机械去角质方法合成graphene纳米片,不适用于大规模生产。因此,从结构上与石墨烯结构相似的材料的大规模合成方法的发展吸引了越来越多的研究注意力[16]。GO是一种碳材料,显示出类似于石墨烯的化学,光学和电性能,因为它基于晶烯框架[18]。在1958年,Hummers和Offerman开发了一种合成GO的方法[23]。大规模的石墨去角质的最普遍,最有趣的方法之一是在化学反应中使用活性氧化剂来产生氧化石墨烯(GO),这是具有非导导性亲水性特性的碳材料[17]。然而,GO与石墨烯有所不同,因为牛基官能团(例如环氧基和氧基团)位于GO的基础平面上,少量的羧基和羧基存在于其薄片边缘[19,20,21]。go可以通过几种方法合成[22]; 1859年报道的Brodie方法是?r的第一个方法,其中烟雾3和kClo 3分别用作互嵌剂和氧化剂[1]。此方法使用h 2 so 4用纳米3和kmno 4作为石墨的氧化剂去除角质石墨。与Brodie和Staudenmaier的方法相比,Hummers方法具有一些优势。首先,kmno4作为强氧化剂有助于
已知的参与 DNA 切割的灵菌红素氧化剂。15,16 在 10 µ M 浓度下,jadomycin B 未产生可检测到的 DNA 损伤。添加铜离子会以浓度依赖性方式促进 jadomycin B 对双链 DNA(II 型)的单链切割。最佳切割发生在 jadomycin B/Cu(II) 比率介于 0.5 和 1 之间时;仅使用 10 µ M 铜时未观察到切割。降低任一试剂的浓度都会降低切割程度,表明该反应不是催化反应。需要 Cu(II) 来引起 DNA 损伤,这让人想起博来霉素所表现出的金属介导作用机制,17 博来霉素是一种用于治疗某些癌症的糖肽类抗生素。这些药物通过氧依赖性的铁介导的 DNA 骨架切割发挥细胞毒作用。与天然产物灵菌红素一样,15,16 jadomycin B 可能能够还原 Cu 2 + 离子以产生类似的芬顿型化学反应,其中活性氧物质是造成 DNA 损伤的原因。在以亮氨酸作为唯一氮源的条件下培养时,委内瑞拉链霉菌 ISP5230 会产生 jadomycin L,18 jadomycin B 的结构异构体
Bee产品长期以来一直在古代(埃及,希腊和中国)中用于医学。目前,Bee产品(Prop-Olis,Bee Pollen,Royal Jelly,Bee Wax,Bee Pollen)被接受作为替代药物,其应用是指组成和替代药物(CAM)(Sun Yi等,1988)。作为先前的研究,蜜蜂花粉中的类黄酮具有抗氧化活性,被认为是能够通过抑制氧化应激而降低血清葡萄糖水平的化合物(Gheldof N等,Gheldof N等,2002; Goth L,1991)。此外,蜜蜂花粉的抗氧化剂活性可以改善胰岛素耐药条件下的胰岛素受体。因此,可以提高胰岛素的敏感性(Koracevic D等,2001)。因此,本研究中使用的蜜蜂花粉来自Kelulut Bees(Trigona SP)。kelulut蜜蜂是小蜜蜂,尾巴上没有刺痛。kelulut蜜蜂在东加利曼丹森林中发现。Bee Kelulut的优势是它产生的蜜蜂花粉比其他类型的蜜蜂多。
皮肤伤口愈合是一个复杂的生物学过程,涉及一系列协调的步骤,最终恢复了皮肤的完整性和功能。干细胞和巨噬细胞分泌物在促进这种自然修复过程方面显示出希望。本研究旨在探索局部移植的间充质干细胞/巨噬细胞培养物上清液对伤口愈合过程中氧化应激标记的影响。在大鼠上创建了全厚性伤口。一组接受了MSC和巨噬细胞培养上清液的1:1混合物的局部注射,而对照组则没有。21天后,研究人员测量了伤口组织中氧化应激和抗氧化剂活性的标记。接受培养上清液混合物的群体表现出明显较低的丙二醛(MDA)和总氧化剂状态(TOS)。此外,它们显示出较高的谷胱甘肽过氧化物酶(GPX)和较高的总抗氧化能力(TAC)活性。培养上清液混合物的局部移植通过减少氧化应激和增加抗氧化活性来改善伤口愈合。这些发现表明,这种方法可能是一种有希望的无细胞治疗治疗伤口愈合。
我们介绍了新的基于奎诺林的共价三嗪框架(quin-ctf)的设计和合成,该框架将两个光活性片段结合在其结构(三嗪和喹啉部分)之内。通过将这种CTF材料与氟二氧化钛(F-TIO 2)杂交,我们准备并表征了具有增强性能的光催化剂,从而利用了两个成分之间的协同作用,以使水中的污染物光降解在水中。该F-Tio₂@CTF杂交系统被评估用于甲基蓝色染料的光催化降解和药物化合物,例如环丙沙星作为模型水污染物。含有少量CTF(0.5、1和2 wt。%)的杂种材料达到了显着的光降解效率,其表现明显优于其单个对应物。使用F-TIO 2催化的此类过程中涉及的反应性氧化剂(ROS)与使用原始Quin-CTF或其混合材料时所涉及的反应性氧化物种不同。此外,杂种材料表现出可重复使用性,可在多个周期内保留高光催化活性。因此,这项工作强调了一种有希望的策略,即通过将少量基于CTF的系统(例如二氧化钛)纳入少量基于CTF的系统来设计具有成本效益且环保的光催化系统,从而提供了可持续且有效的解决方案,以缓解水污染。
摘要:色氨酸 - 京难是途径(TRP – KYN)是大脑和外围色氨酸浓度的主要途径。kynurenines表现出广泛的生物学作用(通常是对比的),例如细胞毒性/细胞保护剂,氧化剂/抗氧化剂或促抗/抗炎性敏感性。净效应取决于它们的局部浓度,细胞环境以及复杂的正反馈回路。有益的和有害的雌元之间的不平衡与包括糖尿病(糖尿病)(DM)在内的各种神经退行性疾病,精神病和代谢性疾病的发病机理有关。尽管有可用的疗法,但DM可能导致严重的宏观和微血管并发症,包括心脏和脑疾病,外周血管疾病,慢性肾脏疾病,糖尿病性视网膜病,自主神经病或认知障碍。众所周知,通常与DM相吻合的低度炎症会影响KP的功能,相反,Kynurenines可以调节免疫反应。本综述提供了基于可用动物,人类和微生物组研究的DM中TRP – KYN途径状态的详细摘要。我们强调了在DM和胰岛素耐药性的发育中,TRP转化为trp的(功能和定性上)转化为Kynurenines的分子相互作用的重要性。TRP – KYN途径是在寻找DM中寻找预防和治疗干预措施的新目标。
为了减少二氧化碳排放,人们正在进行前所未有的研究,以开发高效、廉价的电动汽车和固定式储能系统,用于风能和太阳能等间歇性(可再生)能源产生的能量。1,2 在这方面,越来越多的基于钠 (Na)、镁 (Mg) 和铝 (Al) 的电池受到关注,因为这些元素在地球上含量丰富,因此与代表目前商业标准的锂 (Li) 离子电池 (LIB) 相比,它们的总体成本可能更低。3,4 然而,用钠、镁或铝离子取代锂离子需要对此类电池的阴极和电解质材料以及电化学进行深入的修订和重新探索。在此,我们简要回顾了基于地球丰富元素的新兴电池技术——不包括已经成熟的系统,例如铅酸电池和钠硫电池以及基于硫/空气阴极的后锂离子电池——并讨论它们各自的优缺点。人们认识到,基于钾 (K) 的电池作为一种低成本电池技术开始引起人们的关注,5 但为了简洁起见,本文将省略它。可充电电池的工作原理是基于阳极材料(负极,“还原剂”)和阴极材料(正极材料,“氧化剂”)之间的可逆氧化还原反应。阳极和阴极材料在空间上
消毒被认为是控制病毒在水中传播的关键步骤。氧化剂是有效的病毒消毒剂。然而,缺乏氧化剂对病毒失活的相对效率的结论性研究,而实际水样品中的消毒性能尚不完全清楚。在这项研究中,评估了臭氧(O 3),过氧化氢(H 2 O 2)和过氧基硫硫酸盐(PMS)的消毒作用,以不同剂量和接触时间的不同剂量和接触时间。结果表明,O 3以最短的接触时间为较低剂量的MS2 Coliphage灭活。为了实现MS2 coliphage的4-log消毒,所需的氧化剂剂量被排名为O 3 此外,全面比较了去离子水和次级e uent中三种氧化剂的消毒性能。 所有三种氧化剂均达到了MS2 Coliphage的4型灭活。 激发 - 发射矩阵(EEM)的结果表明,所有三种氧化剂均同步去除溶解有机物,并且O 3氧化了溶解的有机物,同时保持了消毒效率。 总结一下,O 3是这三种氧化剂中MS2 Coliphage消毒的最佳选择。 结果丰富了水中病毒消毒的研究,并为进一步研究工业实践中氧化剂的剂量提供了理论基础。此外,全面比较了去离子水和次级e uent中三种氧化剂的消毒性能。所有三种氧化剂均达到了MS2 Coliphage的4型灭活。激发 - 发射矩阵(EEM)的结果表明,所有三种氧化剂均同步去除溶解有机物,并且O 3氧化了溶解的有机物,同时保持了消毒效率。总结一下,O 3是这三种氧化剂中MS2 Coliphage消毒的最佳选择。结果丰富了水中病毒消毒的研究,并为进一步研究工业实践中氧化剂的剂量提供了理论基础。
核因子红细胞 2 相关因子 2 (Nrf2) 是一种调节氧化还原稳态的转录因子,在细胞增殖和存活等多种细胞过程中起着关键作用,并且已发现在许多癌症中异常激活。作为关键致癌基因之一,Nrf2 是癌症治疗的重要治疗靶点。研究已经揭示了 Nrf2 通路调控的主要机制以及 Nrf2 在促进肿瘤发生中的作用。人们已经付出了很多努力来开发有效的 Nrf2 抑制剂,并且正在对其中一些抑制剂进行多项临床试验。天然产物被公认为开发新型癌症疗法的宝贵来源。到目前为止,已鉴定出多种天然化合物作为 Nrf2 抑制剂,如芹菜素、木犀草素和包括鸦胆子醇和鸦胆子素 D 在内的类鸦胆子素化合物。这些 Nrf2 抑制剂被发现可介导氧化反应,并在不同类型的人类癌症中表现出治疗作用。在本文中,我们回顾了 Nrf2/Keap1 系统的结构和功能以及天然 Nrf2 抑制剂的开发,重点介绍了它们对癌症的生物学功能。我们还总结了 Nrf2 作为癌症治疗潜在治疗靶点的现状。希望这篇综述能够促进对天然 Nrf2 抑制剂作为癌症治疗候选药物的研究。