CO 2排放每年继续增加。因此,要达到巴黎气候协议中设定的目标,有必要减少排放并实施CO 2捕获方法(Kammerer等,2023)。减少CO 2排放的必要性是许多国际法律所需的,包括适合55个包装(Bro园等人2023)和排放交易系统(EU ETS)的修订(Bordignon和Gamannossi degl'innocenti,2023年,Rogulj等人。2023)。在2022年,在通过部门全球发射CO 2中,在电能和发热部门中观察到最大的排放,占总排放量的39.7%(国际能源局,2023年)。在波兰,系统热量大约有1500万人使用,受监管的热量占家庭市场的42%(IzbaGospodarczaCiepłownictwoPolskie 2023)。在热量产生中使用的燃料的多元化正在缓慢发展。波兰市场仍然由化石燃料主导,化石燃料在2021年占热源中使用的所有燃料的69.5%(2020年至68.9%,2019年至71%,2018年 - 72.5%,2017年至74.0%)。在2021年,使用了14,0.89亿吨这种原料来实现许可的热工程需求(UrządRegulacji Energetyki 2022)。必须指出的是,除了燃烧过程外,煤炭的发掘对环境造成了重大负担(Chłopek等人。2021)。上述数据表明,CO 2排放的减少构成了一个严重的挑战。减少
由于高电力,快速充电/放电速率和长周期稳定性,对超级电容器在储能系统中的应用越来越兴趣。研究人员最近专注于开发纳米材料,以增强其超级电容器的电容性能。尤其是,由于其扩大的特定表面积,将纤维作为模板的利用带来了理论和实用的优势,这会导致快速电解质离子扩散。此外,据信,氧化还原活性成分(例如过渡金属氧化物(TMO)和导电聚合物(CPS))被认为在改善基于晶格材料的电化学行为方面起着重要作用。尽管如此,含有基于TMO和CP的纤维的超级电容器通常患有下等离子传输动力学和电子电导率较差,这会影响电极的速率能力和循环稳定性。因此,基于TMO/CP的脑的发展引起了广泛的关注,因为它们协同结合了两种元素的优势,从而在电化学领域具有革命性的应用。本综述描述并重点介绍了基于TMO-,CP-和TMO/CP基于其设计方法,为超级电容器应用的配置和电化学性能的开发的进展,同时为未来的存储技术提供了新的机会。©2019作者。由Elsevier Ltd.这是CC BY-NC-ND许可证(http://creativecommons.org/licenses/by-nc-nd/4.0/)下的开放访问文章。
1 IPCC,2018年:决策者摘要。在:1.5°C的全球变暖。一份IPCC特别报告,关于在工业水平高于工业水平及相关全球温室的全球变暖的影响,在加强全球对气候变化,可持续发展的威胁,可持续发展以及消除贫困的努力的反应的背景下[Masson-Delmotte,V.Pörtner,D。Roberts,J。Skea,P.R。Shukla,A。Pirani,W。Moufouma-Okia,C。Péan,R。Pidcock,S。Connors,J.B.R。Matthews,Y。Chen,X。Zhou,M.I。 Gomis,E。Lonnoy,T。Maycock,M。Tignor和T. Waterfield(编辑)]。 剑桥大学出版社,英国剑桥和美国纽约,美国,pp。 3-24。 https://doi.org/10.1017/9781009157940.001Matthews,Y。Chen,X。Zhou,M.I。Gomis,E。Lonnoy,T。Maycock,M。Tignor和T. Waterfield(编辑)]。剑桥大学出版社,英国剑桥和美国纽约,美国,pp。 3-24。 https://doi.org/10.1017/9781009157940.001剑桥大学出版社,英国剑桥和美国纽约,美国,pp。3-24。 https://doi.org/10.1017/9781009157940.0013-24。 https://doi.org/10.1017/9781009157940.001
二氮氧化物(DZX)仍然是治疗长期和持续形式高胰岛素低血糖(HH)的第一线药物。在近40% - 50%的HH病例中,遗传机制是未知的。几乎一半的具有永久性或遗传原因的婴儿对DZX敏感,但是对DZX的超敏反应极为罕见,并且该机制知之甚少。在这里,我们第一次报告了与HH的新生儿中DZX超敏反应的案例,HH继承了母亲的新型HNF1A变体。一个术语,是糖尿病母亲的男性大胎龄婴儿,出现了严重的,复发性低血糖的早期发作。降血糖确认HH时临界血液样本。二氮氧化物以5 mg/kg/day的常规剂量开始,导致高血糖(血糖,16.6 mmol/l)在48小时内。葡萄糖输注迅速断奶。dzx被扣留并最终停止。单独使用3天的牛奶饲料,并具有正常的葡萄糖效果,怀疑HH的分辨率,他接受了6小时的禁食研究并通过了。在医院的葡萄糖监测时,他再次出现降血糖发作,关键血液样本确认了HH。dzx以3 mg/kg/day的较低剂量重新启动,这需要在获得稳定的尤利西亚之前进一步下降至0.7 mg/kg/day。不再发生低血糖或高血糖发作,他在出院前通过了一项安全禁食研究。分子基因检测确定了母亲 - 儿童二元的新型HNF1A突变,而父亲则测试了阴性。我们得出的结论是,由于这种新型HNF1A突变引起的HH表型可能是突变的,并且需要非常低剂量的DZX。临床医生应在启动DZX治疗的同时,应仔细观察糖尿病性酮症酸中毒和高血糖高质量状态的风险。
本文提出将氨基酸改性氧化石墨烯衍生物 (GO-AA) 作为活性材料,用于捕获水介质中的有机污染物并进行电化学检测。草甘膦 (GLY) 是一种存在于许多水体中的除草剂,被选为基准物质,以测试这些材料的电活性有效性,从而为捕获事件提供直接证据。通过环氧环开环反应将 L -赖氨酸、L -精氨酸或 L -蛋氨酸接枝到 GO 表面,促进氨基酸结合并伴随 GO 的部分还原。合成过程导致电荷电阻从 GO 的 8.1 K Ω 降至各种 GO-AA 的 0.8 – 2.1 K Ω,从而支持这些材料在电化学传感中的适用性。所得 GO-赖氨酸、GO-精氨酸和 GO-蛋氨酸用于从水中吸附 GLY。 GO-Lysine 与 GLY 的相互作用最强,1 小时后的去除效率为 76%,大约是工业基准吸附剂颗粒活性炭的两倍。当用作活性材料捕获 GLY 并进行电化学检测时,GO-AA 的性能也优于原始未改性材料。GO-Lysine 表现出最佳灵敏度,即使浓度低至 2 μ g/L 也能识别水中的 GLY。分子动力学模拟证实,这种材料增强的性能可归因于赖氨酸部分和 GLY 之间的氢键和盐桥相互作用,而氢键和盐桥相互作用源于氢键和盐桥相互作用。
摘要:磁氧化铁(IO)纳米颗粒具有较长的血液保留时间,生物降解性和低毒性已成为体外和体内生物医学应用的主要纳米材料之一。io纳米颗粒具有较大的表面积,可以设计用于提供大量的功能组,用于与涉及肿瘤靶向的配体的交联,例如单克隆抗体,肽或小分子,用于诊断成像或递送治疗剂的诊断成像。io纳米颗粒具有独特的顺磁性,从而产生显着的易感性效应,从而产生强t 2和t * 2对比度,以及在非常低浓度的磁共振成像(MRI)下的t 1效应,用于临床肿瘤学成像。我们回顾了靶向IO纳米颗粒的开发用于肿瘤成像和治疗的最新进展。关键字:氧化铁纳米颗粒,肿瘤成像,MRI,治疗
1969 年,人们发现一种以前未知功能的牛红细胞蛋白具有催化超氧化物自由基歧化活性 (1-3)。这种酶,即超氧化物歧化酶,是一种金属蛋白,每分子含有 2 (1.8-2.0) 个铜原子和 2 (1.7-1.9) 个锌原子,分子量为 33,000,由两个大小相同的亚基组成 (4, 5)。从其他真核生物中纯化的铜锌歧化酶在分子量、亚基结构、氨基酸组成、铜锌含量以及对纯化所用的氯仿-乙醇混合物的稳定性方面与牛红细胞歧化酶相似 (2, 3)。细菌来源的酶代表一类独特的超氧化物歧化酶,其每个分子含有 1-2 个锰原子作为金属辅因子,对氯仿-乙醇处理不稳定,其氨基酸组成与铜锌歧化酶明显不同(2、3、6-8)。细菌酶的分子量约为 40,000,每个酶含有两个分子量为 20,000 的亚基。最近又分离出两种超氧化物歧化酶,其稳定性、纯化特性和氨基酸组成与细菌锰歧化酶相似。一种来自鸡肝线粒体(8)的超氧化物歧化酶每个分子含有 2.3 个锰原子,虽然它是四聚体,但其亚基分子量与细菌含锰酶相同。另一种是含有铁(每个分子约 1 个原子)而不是锰的,已从大肠杆菌中分离出来(9),是一种二聚体,其亚基大小相同(分子量 19,000)。已在各种需氧、厌氧和耐氧厌氧微生物中测量了超氧化物歧化酶活性水平(10)。从观察到的相关性来看,