P-糖蛋白 (P-gp/ABCB1) 的过度表达是导致多药耐药 (MDR) 的主要原因。因此,发现能够抵抗 ABCB1 介导的多药耐药性的有效药物至关重要。FRAX486 是一种 p21 活化激酶 (PAK) 抑制剂。本研究的目的是研究 FRAX486 是否可以逆转 ABCB1 介导的多药耐药性,同时探索其作用机制。CCK8 检测表明 FRAX486 显著逆转了 ABCB1 介导的多药耐药性。此外,蛋白质印迹和免疫荧光实验表明 FRAX486 对 ABCB1 的表达水平和细胞内定位没有影响。值得注意的是,发现 FRAX486 可以增强细胞内药物积累并降低药效,从而逆转多药耐药性。对接分析还表明 FRAX486 与 ABCB1 之间存在很强的亲和力。这项研究强调了 FRAX486 逆转 ABCB1 介导的多药耐药性的能力,并为其临床应用提供了宝贵的见解。
摘要:虽然已知来自Angelicae Dahuricae的同含同胞毒素具有抗病毒,抗糖尿病,抗炎和抗肿瘤作用,但其潜在的抗肿瘤机制到目前为止仍然难以捉摸。因此,在肝细胞癌(HCCS)中探索了同氨基肌蛋白的凋亡机制。在这项研究中,同层抑制了HUH7和HEP3B HCC的生存能力,并增加了SubG1凋亡部分,并且也废除了HUH7和HEP3B细胞中Pro-Poly-ADP核糖聚合酶(Pro-parp)和Pro-Caspase 3的表达。另外,同氨基氨基氨基氨基蛋白废除了细胞周期蛋白D1,Cyclin E1,CDK2,CDK4,CDK6,P21作为HUH7和HEP3B细胞中与G1相阻滞相关的蛋白的表达。有趣的是,Isoimimporatorin通过免疫沉淀(IP)降低了C-Myc和Sirtuin 1(SIRT1)的表达和结合,HUH7细胞中的结合评分为0.884。此外,同层抑制剂抑制了蛋白酶体抑制剂MG132对C-MYC的过表达,并抑制了HUH7细胞中环己酰胺治疗的C-MYC稳定性。总体而言,这些发现支持了新的证据,即C-Myc和SIRT1的关键作用至关重要地参与HCC中的同性氨基氨基肌蛋白诱导的凋亡,这是肝癌治疗中有效的分子靶标。
摘要。背景/目标:在某些白血病患者中报告了组蛋白 - 赖氨酸N-甲基转移酶2a基因(KMT2A)与Rho鸟嘌呤核苷酸交换因子12基因(ARHGEF12)的融合,均在某些白血病患者中融合。我们报告了在治疗带有拓扑异构酶II抑制剂的小儿急性髓样白血病(AML)期间发生的KMT2A-ARHGEF12融合,导致继发性急性淋巴细胞性白血病(全部)。材料和方法:对最初诊断为AML的女孩的骨髓细胞进行了多次遗传分析。结果:在使用AML诊断时,发现T(9; 11)(P21; Q23)/KMT2A-MLLT3遗传异常。化学疗法导致AML临床缓解后,发现在11q23中发现了2 MB缺失,产生了KMT2A-ARHGEF12融合基因。当患者后来出现B谱系时,检测到A T(14; 19)(Q32; Q13),一个染色体9染色体的丢失和KMT2A-ARHGEF12。结论:患者在骨髓细胞中依次开发了AML,所有患者均具有三个白血病特异性基因组异常,其中两个是KMT2A的重态。
目的:由于胶质母细胞瘤具有快速生长的特性,其诊断和治疗具有挑战性。确定该疾病的新特征对于改善患者护理非常重要。本研究探讨了细胞周期检查点激酶 Mps1 的过度表达与胶质母细胞瘤患者预后之间的关联。方法:我们分析了 U251 胶质母细胞瘤细胞中 Mps1 敲低后的在线转录组和蛋白质组数据。进行了基因本体富集分析以确定 Mps1 敲低后激活的关键通路。结果:分析显示,细胞周期转换和响应 DNA 损伤的内在凋亡通路是 Mps1 敲低后激活的主要通路。三种基因和蛋白质成为共同靶标:BCL2L1(编码蛋白质 Bcl-xL)下调,而 CDKN1A(编码 p21)和 SETD2(编码组蛋白甲基转移酶 SETD2)上调。结论:本研究首次报道了Mps1抑制与SETD2过表达之间的关联,为胶质母细胞瘤的治疗提供了新的视角。关键词:Mps1,胶质母细胞瘤,基因本体论,转录组学,蛋白质组学,SETD2
癌细胞通常严重依赖 G2/M 检查点来抵御内源性和外源性 DNA 损伤,例如由于基因组不稳定或放疗和化疗而导致的基因毒性应激。G2/M 检查点的关键调节因子是细胞周期蛋白依赖性激酶 1 (CDK1),受到严格控制,包括其磷酸化状态。这种翻译后修饰由磷酸酶 cdc25 和激酶 Wee1 的相反活性决定,与通过调节相互作用蛋白(例如 p21 或细胞周期蛋白 B)的合成或降解相比,它能够更快地对细胞应激做出反应。降低 Wee1 活性会导致 CDK1 活性的异位激活,并导致 DNA 未修复或复制不足,从而过早进入有丝分裂,并导致有丝分裂灾难。本文回顾了将 Wee1 小分子抑制剂用于治疗目的的尝试,包括将 Wee1 抑制剂与基因毒性剂(如放射疗法或诱导复制应激的药物)或与 Wee1 一起表现出合成致死性的通路抑制剂相结合的策略。此外,越来越明显的是,Wee1 抑制剂还可以调节治疗性免疫反应。我们将讨论联合治疗的潜在机制,以确定细胞内在和系统性抗肿瘤活性。
f i g u r e 1 p53失活挽救NBS1 NES-CRE有害脑表型。(a)通过p53失活在p21处拯救NBS1 NES-CRE脑缺陷。(b)与NBS1 NES-CRE EGL和大脑皮层相比,NBS1 NES-CRE,P53 / EGL和大脑皮层缺乏凋亡。比例尺=20μM。(c)与NBS1 NES-CRE的大脑相比,NBS1 NES-CRE EGL中的Tunel阳性细胞数量显着减少。nbs1 nes-cre(n = 3),nbs1 nes-cre,p53 /(n = 2),nbs1 ctrl(n = 4)。nbs1 nes-cre vs nbs1 ctrl(脑皮质**:p = 0.0018,egl ****:p <0.0001),nbs1 nes-cre,p53 / vs nbs1 nbs1 nbs1 nes-cre(大脑皮层NBS1 CTRL(脑皮质 *:P = 0,0181,EGL *:P = 0.0360)。(d)NBS1 NES-CRE和NBS1 NES-CRE,P53 / EGL表现出γ-H2AX灶。比例尺=20μM。(E)NBS1 NES-CRE和NBS1 NES-CRE,p53 / eGL和脑皮质中γ-H2AX +细胞的定量。n.s:没有显着差异。nbs1 nes-cre
肿瘤抑制磷酸酶和Tensin同源物(PTEN)负调节胰岛素信号通路。种系PTEN致病性变异引起与儿童脂肪瘤发育相关的PTEN Hamartoma肿瘤综合征(PHTS)。脂肪祖细胞(APC)在连续培养过程中失去了分化为脂肪细胞的能力,而PHTS患者的脂肪瘤的APC在长时间内保留其脂肪生成潜力。仍然不清楚哪种机制会触发这种异常的脂肪组织生长。为了研究PTEN在脂肪组织发育中的作用,我们进行了功能性测定和对照和PTEN敲低APC的RNA-SEQ。使用siRNA或CRISPR降低PTEN水平,导致APC的增殖和分化增强。 已知叉子盒蛋白O1(FOXO1)转录活性受胰岛素信号的调节,FOXO1在mRNA水平下下调,而其通过磷酸化的失活增加。 FOXO1磷酸化启动脂肪生成激活转录因子固醇调节元素结合蛋白1(SREBP1)的表达。 sREBP1水平较高,在PTEN敲低后,可能会说明观察到的脂肪形成增强。 为了验证这一点,我们在PTEN CRISPR细胞中过度过度过分活跃的FOXO1,并发现脂肪形成降低,并伴有SREBP1下调。 我们观察到与对照组相比,PTEN CRISPR细胞显示出较小的衰老,并且在PTEN敲低细胞中衰老标记CDKN1A(P21)被下调。使用siRNA或CRISPR降低PTEN水平,导致APC的增殖和分化增强。叉子盒蛋白O1(FOXO1)转录活性受胰岛素信号的调节,FOXO1在mRNA水平下下调,而其通过磷酸化的失活增加。FOXO1磷酸化启动脂肪生成激活转录因子固醇调节元素结合蛋白1(SREBP1)的表达。sREBP1水平较高,在PTEN敲低后,可能会说明观察到的脂肪形成增强。为了验证这一点,我们在PTEN CRISPR细胞中过度过度过分活跃的FOXO1,并发现脂肪形成降低,并伴有SREBP1下调。我们观察到与对照组相比,PTEN CRISPR细胞显示出较小的衰老,并且在PTEN敲低细胞中衰老标记CDKN1A(P21)被下调。细胞衰老是PTEN敲低与对照细胞的RNA-Seq中发现的最显着富集的途径。这些结果提供了证据,表明PTEN参与了APC增殖,差异和衰老的调节,从而导致PHT患者的异常脂肪组织生长。
尽管进行了局部和全身治疗,实体癌仍经常复发并出现远处转移。细胞休眠已被确定为导致晚期复发的耐药性的重要机制。因此,看似无病的患者出现不可见的、微小残留癌症复发需要适合药物发现的体外休眠细胞模型。在这里,我们探索了休眠诱导的 3D 工程基质,这些基质产生机械限制并诱导癌细胞生长停滞和化疗存活。我们通过 P-ERK 低:P-p38 高休眠信号比以及 Ki67 − 表达来表征单细胞的休眠表型。作为潜在机制,我们确定了四个半 LIM 结构域 2 (FHL2) 蛋白的硬度依赖性核定位,导致 p53 独立的高 p21 Cip1/Waf1 核表达,这在小鼠和人类组织中得到了验证。休眠诱导基质中的细胞在 FHL2 下调后对化疗变得敏感,这暗示了其具有抗药性作用。因此,我们基于生物材料的方法将能够系统地筛选出以前未发现的适合根除可能复发的休眠癌细胞的化合物。
农药是用作农业活动中的害虫控制的化合物。使用农药会留下农业残留物并在水生环境中造成污染。在水生环境和农产品中积累的农药暴露对人类的负面影响,包括器官系统,组织,胚胎发育的干扰,导致早期衰老。衰老是一种条件,当细胞发生涉及氧化应激,DNA损伤和线粒体功能障碍机制的周期停滞时,可能会触发器官功能的降低,从而导致各种退行性健康问题。此外,衰老会导致干细胞周期停滞,包括间充质干细胞(MSC)。本评论的重点是讨论与因杀虫剂暴露于干细胞(特别是MSC)引起的衰老机制相关的途径。使用的方法是使用VosViewer的Scopus索引期刊的数据收集和分析。根据我们的综述,众所周知,农药通过增加ROS并减少ALDH活性来诱导MSC衰老。这会导致p53和p21的激活,从而导致CDK2和PRB的抑制,从而导致E2F失活和衰老诱导。衰老还将提供对肿瘤发生效应的其他病理生理反应。
RAS P21蛋白激活剂1(RASA1)位于铬-5q14.3上,是Rasgap家族的成员,其中包括NF1,DAB2IP和Rasal2(1)。RASA1包含以下域:SRC同源性2和3(SH2和SH3),N末端C2A和C2B,GTPase激活蛋白(GAP)和Pleckstrin同源(pH),它们附着在Bruton的酪氨酸酶(BTK)基础上。rasa1是具有双重指定性的差距,可增强和加速RAS和RAP的GTPase活性。值得注意的是,细胞内Ca 2+水平调节RASA1的间隙活性。当Ca 2+浓度较高时,RAS的C2结构域和RAP允许磷酸脂质的结合,而pH结构域则保持不活跃并防止脂质结合。rasa1通常位于细胞质中,作为可溶性蛋白质,并在细胞内Ca 2+浓度的受体介导的增加后募集到质膜上(2)。当RASA1与膜相关时,RASA1的RasGAP活性增加了,因为RasGap活性以RASA1的可溶形式有限,尽管未知的机制尚不清楚(3)。sh2 -ptyr相互作用允许RASA1与P190RHOGAP(P190RHOGAP -A,ARHGAP35)相互作用,这是Rho的差距(4)。由于其特殊
