摘要:COPD(慢性阻塞性肺部疾病)是与全球大量发病率和死亡率相关的主要公共卫生问题。当前的该疾病治疗指南建议从吸入的支气管扩张剂开始,必要时加紧结合疗法,和/或将吸入的皮质类固醇作为症状和气流阻塞的进展。但是,没有药物治疗可以阻止疾病进展。COPD发病机理的基础机理定义仍然很少了解,人们普遍认为,氧化应激和低度气道炎症的免疫反应改变是导致COPD发展的主要因素。目前正在研究的几种潜在的治疗靶标,包括炎症和肺相关的类固醇耐药性的免疫调节途径是由氧化应激信号传导级联反应引起的。COPD患者的炎症介质水平增加,包括脂质和肽介质,以及维持炎症免疫反应并募集循环细胞进入肺部的细胞因子和趋化因子网络。 这些促炎性介质中的许多受核因子-Kappab(NF-κB)和有丝分裂原激活的蛋白激酶(MAPKS)(例如p38 MAPK)调节。 增加的氧化应激是永久性炎症和肺损伤的关键驱动机制。 此外,许多降解弹性蛋白纤维的蛋白酶被气道驻留的COPD患者浸润免疫细胞分泌。 关键字:COPD,机械,药物治疗COPD患者的炎症介质水平增加,包括脂质和肽介质,以及维持炎症免疫反应并募集循环细胞进入肺部的细胞因子和趋化因子网络。这些促炎性介质中的许多受核因子-Kappab(NF-κB)和有丝分裂原激活的蛋白激酶(MAPKS)(例如p38 MAPK)调节。增加的氧化应激是永久性炎症和肺损伤的关键驱动机制。此外,许多降解弹性蛋白纤维的蛋白酶被气道驻留的COPD患者浸润免疫细胞分泌。关键字:COPD,机械,药物治疗从这个角度来看,我们在炎症和氧化应激的背景下讨论了信号通路激活的新颖方面,以及针对COPD中潜在的机械疾病过程的潜在有效药物治疗的广泛观点。
摘要本综述的目的是通过审查分子信号传导途径来描述耐力和力量体育训练对心血管系统的影响,该途径在不同的肌肉适应中起着关键作用,以及代谢和心脏重塑和血液动力学方面的心脏变化。响应于耐力 - 运动,包括Ca 2+依赖性途径,活性氧(ROS),AMP依赖性蛋白激酶(AMPK)和有丝分裂原活化蛋白激活的蛋白激酶(p38 MAPK)的多种信号通路参与了多氧化物组生物剂 - 生效α-coctator-intacivator-1 cocactator-cocactator-cocactator-inty coactator-rycactator-1控制线粒体生物发生。强度训练增加了胰岛素样生长因子(IGF-1),该因子启动了磷脂酰肌醇3-激酶(PI3-K) - (AKT) - (MTOR)信号级联,导致蛋白质和肌肉肥大的合成。除了有据可查的骨骼肌变化外,对运动训练的反应的关键组成部分是动态心脏重塑,根据触发因素而被归类为病理或生理。关键字:运动心脏病学,运动生理学,运动医学
辣木 (MO) 因其卓越的药用价值而闻名,不同文化中的说法和越来越多的科学证据都支持这一观点。临床前实验证据表明,MO 可通过对破骨细胞和成骨细胞的影响有效减少骨质流失并促进骨骼重塑。体内研究表明,MO 可增强骨骼健康的关键方面,例如骨量、小梁厚度和整体骨密度。此外,MO 对骨生物标志物(包括碱性磷酸酶和 1 型前胶原 N 端前肽)产生积极影响,反映出骨形成改善。此外,体外和离体研究表明,MO 可促进骨再生、刺激成骨细胞活性并减少炎症。在机制方面,MO 可能调节与骨代谢相关的信号通路,例如 BMP2、PI3K/Akt/FOXO1、p38 α /MAPK14 和 RANKL/RANK//OPG 通路。这一证据为未来临床研究和管理和预防骨质流失状况的潜在治疗应用提供了坚实的基础。
Akt¼蛋白激酶B; ALP¼碱性磷酸酶; a-sma¼a -smooth肌肉肌动蛋白; AMPK¼腺苷单磷酸 - 活化的蛋白激酶; ANP¼14钠肽; Arn¼血管紧张素受体Neprilysin抑制剂; AST¼天冬氨酸氨基转移酶; ATF-4¼激活转录因子4; BAX¼Bcl-2相关X蛋白; B-MHC¼B-肌球蛋白重链; bohb¼b-羟基丁酸酯; BNP¼B型纳特里尿肽; CAT¼过氧化氢酶; CFR¼冠状动脉储备; CK-MB¼肌酸激酶MB; CRS¼心脏综合征; CTNT¼心脏肌钙蛋白T;潮湿¼损伤相关的分子模式; dox¼阿霉素; ECG¼心电图; ef¼射血分数; EIF-2a¼真核生物起始因子2 a; Er¼内质网; ERK¼1.1.1/1/14; FGF¼FIMBLAST生长因子; FS¼部分缩短; g-csf¼1/1/14 GM-CSF¼1/1/1/14 GRP78¼葡萄糖调节的蛋白78; HTN¼高血压; I.P.¼腹膜内; IL¼白痴; IL¼白痴; IL¼白痴; iNOS¼诱导一氧化氮合酶; LDH¼14乳酸脱氢酶; LV¼左心室; lvedd¼左心室末端直径; lvesd¼左心室末端音直径; LVIDD¼左心内直径在末端末端;末端收缩处的LVIDS¼左心内直径; MDA¼MALONDIALLEDEDEDE; MMP¼基质金属肽酶; MPO¼髓过氧化物酶;雷帕霉素的mtor¼哺乳动物靶标; mybpc3¼结合蛋白C3; MyD88¼髓样差异反应88; NCD¼正常食物饮食; NF-kb¼核因子kappa-b; NLRP3¼NOD样受体蛋白3;无¼一氧化氮; NOX-1¼NADPH氧化酶1; NOX-2¼NADPH氧化酶2; NRF2¼核因子红细胞2 - 相关因子2; NT-Proanp¼n末端Pro - 心房纳地肽; NT-PROBNP¼N末端Pro - B型纳地尿肽; p38¼p38有丝分裂原激活的蛋白激酶; PARP¼聚(二磷酸腺苷 - 核糖)聚合酶; PERK¼蛋白激酶R样性内质网激酶; PGC¼过氧化物酶体增殖物 - 激活的受体共激活剂; PI3K¼磷酸肌醇3-激酶; PPAR¼过氧化物酶体增殖物 - 活化受体; QTC¼校正的QT; SIRT1¼SIRTUIN1; Sirt3¼Sirtuin3; Smad3¼母亲反对脱皮的同源物3; SOD¼超氧化物歧化酶; TGF¼转化生长因子; TLR9¼Toll样受体9; TNF¼肿瘤坏死因子; XO¼黄嘌呤氧化酶;其他缩写如表1所示。
尽管进行了局部和全身治疗,实体癌仍经常复发并出现远处转移。细胞休眠已被确定为导致晚期复发的耐药性的重要机制。因此,看似无病的患者出现不可见的、微小残留癌症复发需要适合药物发现的体外休眠细胞模型。在这里,我们探索了休眠诱导的 3D 工程基质,这些基质产生机械限制并诱导癌细胞生长停滞和化疗存活。我们通过 P-ERK 低:P-p38 高休眠信号比以及 Ki67 − 表达来表征单细胞的休眠表型。作为潜在机制,我们确定了四个半 LIM 结构域 2 (FHL2) 蛋白的硬度依赖性核定位,导致 p53 独立的高 p21 Cip1/Waf1 核表达,这在小鼠和人类组织中得到了验证。休眠诱导基质中的细胞在 FHL2 下调后对化疗变得敏感,这暗示了其具有抗药性作用。因此,我们基于生物材料的方法将能够系统地筛选出以前未发现的适合根除可能复发的休眠癌细胞的化合物。
类风湿关节炎 (RA) 是一种代表性的自身免疫性疾病,其主要特征是持续性炎症和滑膜关节的进行性破坏。RA 具有复杂且异质性的病理生理学,涉及各种免疫和关节基质细胞之间的相互作用以及多种细胞因子和细胞内信号通路网络。随着对 RA 的了解不断加深,在过去的几十年里,治疗策略已经取得了相当大的进步,现在包括靶向分子疗法,例如肿瘤坏死因子抑制剂、IL-6 阻滞剂、B 细胞耗竭剂以及 T 细胞共刺激和 Janus 激酶抑制剂。然而,相当一部分 RA 患者患有难治性疾病并因存在发生严重感染和癌症的风险而中断治疗。相反,尽管 IL-1 β、IL-17A 和 p38 α 在 RA 发病机制中发挥重要作用,但针对这些因素的几种药物由于其疗效低下和严重的不良反应而未获批准。在本综述中,我们概述了目前可用的 RA 靶向药物的作用机制、优势和局限性。此外,我们还提出了临床批准和失败药物的潜在机制原因。因此,本综述提供了基础研究和转化研究方法的观点,这些方法有望确定未来下一代 RA 疗法。
摘要:由于免疫系统失调,败血症构成了重大的全球健康挑战。这篇叙述性评论探讨了抗生素与免疫系统之间的复杂关系,旨在阐明所涉及的机制及其临床影响。从临床前研究中,抗生素表现出各种免疫调节作用,包括调节促炎性细胞因子的产生,与Toll样受体的相互作用,p38/pmk-1途径的调节,抑制基质金属蛋白酶的抑制作用,基因氧化物合成酶的阻断和caspase caspase-apoptase-apoptase-apoptase-apoptase-natiral氧化物的阻断。此外,抗生素诱导的微生物组改变与全身免疫的变化有关,影响细胞和体液反应。败血症患者(尤其是大环内酯类)的抗生素使用抗生素由于其免疫调节作用而引起了人们的注意。但是,比较不同类型的大花环的数据有限。更有力的证据来自有关社区获得性肺炎的研究,尤其是在严重的炎症反应的严重病例中。对败血性休克的研究显示了有关死亡率和免疫反应调节的结果,但在急性呼吸遇险综合征中的大环内酯类药物也观察到了冲突的发现。总而言之,需要根据患者的免疫特征来调整抗生素治疗,以优化败血症治疗中的结果。
在暴露于环境压力源时,细胞在适应并恢复体内平衡时会瞬时阻止细胞周期。所有细胞的挑战是区分应力signal,并与细胞周期停滞协调适当的适应性反应。在这里,我们研究了磷酸酶钙调蛋白(CN)在应力反应中的作用,并证明CN激活了酵母和人类细胞中的HOG1/p38途径。在酵母中,MAPK HOG1响应几个经过良好研究的Osmossressors瞬时激活。我们表明,当应激源同时激活CN和HOG1时,CN会破坏HOG1刺激的负反馈对延长HOG1激活和细胞周期停滞周期。通过CN对HOG1的调节还有助于使多个细胞周期调节转录因子(TFS)和细胞周期调节基因表达降低。 cn依赖性G1/s基因的下调取决于HOG1的激活,而CN通过HOG1依赖性和非依赖性机制的组合使G2/M TFS失活。 这些发现表明,CN和HOG1以协调的方式起作用,以抑制细胞周期调节网络的多PLE节点。 我们的结果表明,CN和应力激活的MAPK之间的串扰有助于细胞调整其对特定压力源的适应性反应。通过CN对HOG1的调节还有助于使多个细胞周期调节转录因子(TFS)和细胞周期调节基因表达降低。cn依赖性G1/s基因的下调取决于HOG1的激活,而CN通过HOG1依赖性和非依赖性机制的组合使G2/M TFS失活。这些发现表明,CN和HOG1以协调的方式起作用,以抑制细胞周期调节网络的多PLE节点。我们的结果表明,CN和应力激活的MAPK之间的串扰有助于细胞调整其对特定压力源的适应性反应。
目的:肝内胆管癌(ICC)是一种恶性程度高、异质性强、预后差的癌症,目前除手术切除外没有最佳治疗方法,切除后复发将因多药耐药而导致患者死亡。研究发现,氧化还原信号的改变与肿瘤细胞的生长和耐药性密切相关。因此,本研究旨在从氧化还原库中筛选小分子化合物,寻找抗ICC的药物并探索其下游机制。材料与方法:利用ICC细胞系的肿瘤克隆和球体形成实验以及小鼠ICC类器官增殖实验从氧化还原库中筛选候选药物。采用Western印迹、定量逆转录聚合酶链式反应(qRT-PCR)以及细胞凋亡和细胞周期流式细胞术分析探讨其作用机制。结果:通过抑制肿瘤克隆和肿瘤球形成,以及抑制癌症干细胞(CSC)相关基因的表达,我们发现Hinokitiol是候选药物。此外,Hinokitiol通过下调ERK和P38通路显著抑制ICC细胞增殖。此外,Hinokitiol和Palbociclib联合使用对人ICC细胞和小鼠ICC类器官均有显著的抑制作用。结论:Hinokitiol可能具有开发为ICC临床治疗药物的潜力。
摘要。背景/目的:迫切需要开发新药,以改善骨肉瘤 (OS) 的预后。在本研究中,我们试图确定针对骨肉瘤的新分子靶向药物组合。材料和方法:使用包含 324 种化合物的库。对于第一次筛选,用每种化合物处理 MG-63 OS 细胞并测量细胞活力。在确定最佳候选化合物后,将该化合物纳入第二次筛选。确定最有效化合物的组合。检查该组合的抗增殖作用,并通过蛋白质印迹分析评估细胞信号传导机制。使用 143B OS 小鼠进行体内抗肿瘤测试。结果:在第一次筛选中,硼替佐米被选为有效药物。在第二次与硼替佐米的筛选中,选择了依维莫司。与单独使用这些药物的单一疗法相比,这种组合显示出对细胞增殖的协同抑制作用。与单药治疗相比,联合治疗提高了裂解多聚(ADP-核糖)聚合酶、胱天蛋白酶-3、胱天蛋白酶-8 和胱天蛋白酶-9、磷酸化 c-Jun N 端激酶和 P38 的水平。相反,c-MYC 原癌基因 bHLH 转录因子、survivin 和磷酸化细胞周期蛋白 D1 的水平降低。该组合有效诱导细胞凋亡并干扰细胞周期进程。在体内分析中,联合治疗显著抑制肿瘤生长。结论:依维莫司和
