完整作者名单:Munshi, Joydeep;里海大学,机械工程系 Chien, TeYu;怀俄明大学,物理与天文学系 Chen, Wei;西北大学 Balasubramanian, Ganesh;里海大学,机械工程系;里海大学,
摘要:近年来,作为低成本,导电层的半导体聚合物已受到越来越多的关注。为了显示合理的电导率,必须掺杂半导体聚合物,该过程需要氧化或还原共轭主链和结构重排,以便将电荷平衡柜台容纳到聚合物网络中。在这里,我们旨在了解这种结构重排如何有助于掺杂的能量。我们利用了一个事实,即摩擦对齐的聚(3-己基噻吩-2,5-二苯基)(p3HT)膜包含两个多晶型物,一种具有晶体结构,其密度低于在未对齐的膜中观察到的结构,而另一个具有更紧密的,更紧密的浓度,浓度更紧密的晶状体结构。分别相对于底物,这两种结构分别是面对面和边缘的,因此它们的衍射在Q空间中很好地分开,因此可以分别监测每个种群的掺杂诱导的结构变化。当电影掺杂2,3,5,6- tetrafluoro-7,7,8,8-四甲苯喹啉甲烷烷(F 4 TCNQ)时,比浓度更容易诱导的结构变化,而不是浓度更容易诱导的结构变化。这一发现表明,在掺杂过程中,聚合物晶体结构的重新排列是一个重要的能量术语,并且可以通过设计新聚合物来促进半导体聚合物的掺杂,在该聚合物中,可以在结构减少的聚合物及时中容纳掺杂剂。s
聚合物和小分子混合薄膜在有机电子器件,尤其是有机太阳能电池中具有极高的应用价值。普通 P3HT 和最先进的 Y 系列非富勒烯受体 (NFAs) 的混合物具有很高的可混溶性,可以抑制相分离和聚集,从而抑制电荷分离和传输。在最近的一项研究中,引入了电流诱导掺杂 (CID),这是一种精确控制溶液中聚 (3-己基噻吩) (P3HT) 聚集的方法。本文使用溶液中高度有序的预聚集来控制纯膜和与 Y12 (BTP-4F-12) 的混合物中的 P3HT 聚集。这使得 P3HT 有机场效应晶体管 (OFET) 器件中的空穴迁移率提高了 25 倍,并且在 Y12 存在下 P3HT 聚集体质量可以在大范围内可调。同时,特别是 Y12 长程有序性因 P3HT 聚集性的增加而受到严重抑制。然而,溶剂蒸汽退火 (SVA) 可导致 Y12 有序性极高,Y12 晶体取向发生变化,P3HT 聚集性进一步改善。因此,仅通过改变加工参数而不改变材料系统的组成,就可以在最终薄膜中获得两种材料不同程度的聚集。
摘要:我们已经对聚(3-己基噻吩)(P3HT)(P3HT)和[6,6] - 苯基C61丁基甲基甲基酯酯活性层活性层活性层散装散装量量形的理论入射光子到电流(IPCE)作用光谱。通过玻璃基材/SIO 2/ITO/PEDOT的结构的二维光学模型:PSS/P3HT:PCBM(1:1)/CA/AL,该设备的光响应已计算出针对不同的光活性层和CA层的厚度,从而可以找到最大的设备构造,从而可以在最大程度上效率地效果,从而获得了最大的效果效果,从而可以在上位效果,从而获得最大的效果。已经计算出电场强度,能量耗散,发电速率和IPCE,以提高设备的性能。有限元方法在1.5 AM照明的100 mW/cm 2的入射强度下执行模拟。发现,最佳结构是通过180 nm光活性层和5 nm Ca层厚度实现的。
图 1:O-IDFBR(a)、O-IDTBR 和 EH-IDTBR(b)的化学结构,P3HT:O-IDFBR(红色方块)(c)、P3HT:O-IDTBR(蓝色圆圈)、P3HT:EH-IDTBR(绿色三角形)(d)二元共混物的相图,这些共混物是基于首次加热 DSC 热分析图获得的。根据熔点下降情况,O-IDFBR 最初倾向于与 P3HT 混合,而不是 O-IDTBR 和 EH-IDTBR。二元 P3HT:O-IDFBR 的相图显示 40-80 wt% O-IDFBR 的组成窗口,其中 O-IDFBR 没有熔点下降,而 P3HT 熔点下降高达 70 wt% O-IDFBR。 40 wt% O-IDTBR 和 50 wt% EH-IDTBR 的共晶组成表明,与 EH-IDTBR 相比,O-IDTBR 的纯初晶开始发育得更早,且 O-IDTBR 的组成更低,这与 O-IDTBR 比 EH-IDTBR 具有更平面(潜在结晶)的化学结构相一致。e)、(f):测得的器件短路电流密度 J sc ,作为 P3HT:O-IDTBR 和 P3HT:O-IDTBR 非退火混合器件组成的函数。J sc 在共晶组成即 40-50 wt% 附近达到峰值,而 P3HT:O-IDFBR 的 J sc 峰值远低于可能的 80 wt% 共晶组成。
共轭聚合物的融化具有溶液加工的一种环保替代方案的潜力,但是分子属性和潜在控制策略的具体作用仍然在很大程度上没有探索。在这里,两个系列的剖面聚(3-己基噻吩)(p3HT)表明,链长的效果在很大程度上取决于链缺损的量(RegieRotality)。超出链折叠过渡,增加分子量M W对于90%的防治性P3HT,导致结晶动力学和降低的热稳定性的结晶质量较慢,而95%的RendOreTorgularity使结晶几乎对链长不敏感。融化的自种可用于操纵P3HT的结晶温度,但是当结晶被阻碍最大时,最有效。更长,更有缺陷的链。p3HT自种由最初存在的微晶的热稳定性主导,而不是仅取决于m w的扩散效应。总体而言,结果强调了控制和报告剖面和分子量的关键需求。
摘要:共轭聚合物是多种下一代电子设备中使用的多功能电子材料。这种聚合物的效用在很大程度上取决于其电导率,这既取决于电荷载体(极性)的密度和载体迁移率。载流子的迁移率又受极性柜台和掺杂剂之间的分离而在很大程度上控制,因为柜台可以产生库仑陷阱。在先前的工作中,我们显示了基于十二烷(DDB)簇的大掺杂剂能够减少库仑结合,从而增加晶状体(3-己基噻吩-2,5-二苯基)的载流子迁移率(P3HT)。在这里,我们使用基于DDB的掺杂剂研究化学掺杂的降级(RRA)P3HT的极化子 - 反子分离的作用,这是高度无定形的。X射线散射表明,DDB掺杂剂尽管大小较大,但在掺杂过程中可以部分订购RRA P3HT,并产生与DDB掺杂的RR P3HT相似的掺杂聚合物晶体结构。交替场(AC)霍尔测量值还确认了类似的孔迁移率。我们还表明,大型DDB掺杂剂的使用成功降低了无定形聚合物区域的极性和柜台的库仑结合,从而在RRA P3HT膜上呈77%的掺杂效率。DDB掺杂剂能够生产具有4.92 s/cm电导率的RRA P3HT膜,该值比3,5,6-Tetrafluoro-7,7,7,8,8-8,8-四乙酸氨基甲烷(F 4 TCNQ)(F 4 TCNQ),传统的载量约为200倍。这些结果表明,在共轭聚合物的无定形和半晶体区域量身定制掺杂剂,是增加可实现的聚合物电导率的有效策略,尤其是在具有随机区域化学的低成本聚合物中。结果还强调了掺杂剂的大小和形状对于产生能够在较少有序的材料中电导的库仑未结合的移动极性的重要性。
- 在5至300 K的范围内研究了它们,并在室温下观察到铁磁相。P3HT中磁矩的起源及其铁磁相互作用与在氧化/还原过程中聚合物链中的极性形成有关。关键字:导电聚合物,铁磁性,poly(3-己基滋养)(P3HT)。在5至300 K的温度范围内研究了摘要的聚集(3-己基噻吩)(P3HT)磁力特性,并在环境处发现了铁电磁相。P3HT中磁矩的起源及其铁磁相互作用与聚合物链中极性链氧化/还原过程中极性子的形成有关。关键字:导电聚合物,铁磁剂,poly(3-己基噻吩)。
掺杂剂诱导溶解度控制 (DISC) 聚合物半导体图案化技术的最新进展已使聚-3-己基噻吩 (P3HT) 的直接写入光学图案化成为可能,且分辨率达到衍射极限。在这里,我们将光学 DISC 图案化技术应用于最简单的电路元件——导线。我们展示了 P3HT 和掺杂有分子掺杂剂 2,3,5,6-四氟-7,7,8,8-四氰基醌二甲烷 (F4TCNQ) 导线的 P3HT 的光学图案化,尺寸为厚度 20-70 nm、宽度 200-900 nm 和长度 40 µ m。此外,我们还展示了“L”形弯曲和“T”形结等导线图案的光学图案化,而无需改变结处导线的直径或厚度。经过连续掺杂后,导线本身的电导率高达 0.034 S/cm。我们还证明了 P3HT 纳米线可以在溶液中掺杂、去掺杂和再掺杂,而不会改变导线的尺寸。光学图案化和可逆掺杂聚合物半导体的综合能力代表了一套完整的图案化步骤,相当于无机半导体的光刻技术。
掺杂剂诱导溶解度控制 (DISC) 聚合物半导体图案化技术的最新进展已使聚-3-己基噻吩 (P3HT) 的直接写入光学图案化成为可能,且分辨率达到衍射极限。在这里,我们将光学 DISC 图案化技术应用于最简单的电路元件——导线。我们展示了 P3HT 和掺杂有分子掺杂剂 2,3,5,6-四氟-7,7,8,8-四氰基醌二甲烷 (F4TCNQ) 导线的 P3HT 的光学图案化,尺寸为厚度 20-70 nm、宽度 200-900 nm 和长度 40 µ m。此外,我们还展示了“L”形弯曲和“T”形结等导线图案的光学图案化,而无需改变结处导线的直径或厚度。经过连续掺杂后,导线本身的电导率高达 0.034 S/cm。我们还证明了 P3HT 纳米线可以在溶液中掺杂、去掺杂和再掺杂,而不会改变导线的尺寸。光学图案化和可逆掺杂聚合物半导体的综合能力代表了一套完整的图案化步骤,相当于无机半导体的光刻技术。
