主任,CSIR-NAL PB No 1779,HAL 机场路,班加罗尔-560 017 director@nal.res.in www.nal.res.in
评估蛋白质配体复合物的结合自由能是药物设计中最重要的任务之一。与自由能扰动(FEP)和热力学整合(Ti)等方法相比,这些方法是准确但资源昂贵的,并且对接得分功能,这些功能较不可靠但有效,分子力学/广义力学/广义(Poisson-Boltzmann)表面积(MM/GB(PB)SA)(MM/GB(PB)SA),以适用于精确效果和效率,这是一个很好的选择。有几种用于执行MM/GB(PB)SA计算的开源工具,但是它们不容易使用,尤其是在处理大量分子时。在这里,我们介绍了Uni-GBSA,这是一种自动工作流程,从力场构建中执行MM/GB(PB)SA计算,结构优化到自由能计算。用于在虚拟筛选中评估一个针对一个蛋白质靶标的几个分子,Uni-GBSA提供了批处理模式,消除了许多重复计算,以同时有效地处理多分子的计算。实验表明,具有精心设计的参数和工作流程默认设置的UNI-GBSA可以获得可靠的结合自由能评估。Uni-GBSA软件(包括源代码)是免费的,可以在https://github.com/dptech-corp/uni-gbsa上找到。
封闭的数据包包含向樱桃山计划委员会申请所需的表格和说明。请仔细阅读说明,因为它们是申请和听力过程的指南。The items listed below are included with this application package: Information & Instructions Planning Board Application Procedures Page 2 - 4 Planning Board Process Chart Page 5 Application Submission Land Use Development Application Page 6 - 9 Escrow Agreement Page 10 - 11 W-9 Form Page 12 Fee Schedule Page 13 - 14 Ownership Disclosure Statement Page 15 Political Contribution Disclosure Statement Page 16 Site & Subdivision Plan Application Checklist Page 17 - 21 Property List Request Form Page 22 Notification Notice of Hearing (Form PB 1) Page 23 Affidavit通知服务的服务(表格2)第24页公开通知(表格3)第25页批准分区许可申请申请后第26页同意承担责任,第27页
a。德累斯顿电子(CFAED),德累斯顿技术大学,Helmholtzstraße18,01069,德国,电子邮件:yana.vaynzof@tu-dresden.de b。 Leibniz固态和材料研究Dresden,Helmholtzstraße,20,01069德国德累斯顿,德国无机剖宫产碘化铅(CSPBI 3)Perovskite太阳能电池(PSC)引起了极大的关注,由于其极佳的热稳定性和光学频带的应用,并适用于〜1.73 EV)。 但是,在低温下处理高效的光伏设备仍然具有挑战性。 在这里,我们报道了一种在温度较低时在低温下制造高效和稳定的γ-CSPBI 3 PSC的新方法,而不是引入长链有机阳离子盐乙烷乙烷1,2-二摩米碘化物(EDAI 2)并调节乙酸铅(PB(OAC)2)在perofskite Pressor solory中的含量(PB(OAC)2)。 我们发现EDAI 2充当可以促进γ-CSPBI 3形成的中间体,而多余的Pb(OAC)2可以进一步稳定CSPBI 3钙钛矿的γ期。 因此,在新方法制造的CSPBI 3膜中观察到了改善的结晶度和形态以及载体重组的减少。 通过优化CSPBI 3倒置太阳能电池的孔传输层,我们证明了高达16.6%的效率,超过了先前检查倒置PSC中γ-CSPBI 3的报道。 值得注意的是,封装的太阳能电池在室温和昏暗的光线下维持其初始效率的97%,持续25天,证明了Edai 2和Pb(OAC)2对稳定γ-CSPBI 3 PSC的协同作用。德累斯顿电子(CFAED),德累斯顿技术大学,Helmholtzstraße18,01069,德国,电子邮件:yana.vaynzof@tu-dresden.de b。 Leibniz固态和材料研究Dresden,Helmholtzstraße,20,01069德国德累斯顿,德国无机剖宫产碘化铅(CSPBI 3)Perovskite太阳能电池(PSC)引起了极大的关注,由于其极佳的热稳定性和光学频带的应用,并适用于〜1.73 EV)。但是,在低温下处理高效的光伏设备仍然具有挑战性。在这里,我们报道了一种在温度较低时在低温下制造高效和稳定的γ-CSPBI 3 PSC的新方法,而不是引入长链有机阳离子盐乙烷乙烷1,2-二摩米碘化物(EDAI 2)并调节乙酸铅(PB(OAC)2)在perofskite Pressor solory中的含量(PB(OAC)2)。我们发现EDAI 2充当可以促进γ-CSPBI 3形成的中间体,而多余的Pb(OAC)2可以进一步稳定CSPBI 3钙钛矿的γ期。因此,在新方法制造的CSPBI 3膜中观察到了改善的结晶度和形态以及载体重组的减少。通过优化CSPBI 3倒置太阳能电池的孔传输层,我们证明了高达16.6%的效率,超过了先前检查倒置PSC中γ-CSPBI 3的报道。值得注意的是,封装的太阳能电池在室温和昏暗的光线下维持其初始效率的97%,持续25天,证明了Edai 2和Pb(OAC)2对稳定γ-CSPBI 3 PSC的协同作用。
在其监管提案中,委员会的多数成员引入了基因编辑术语“PB(精准育种)”。他们将基因编辑生物分为几类,其中 PB-1 和 PB-2 插入了来自相同或可杂交物种的遗传物质。 (NOU 2023:18,第 255 页)7 大多数人声称,这些类别中基因组中发生的变化与自然突变相同。这种说法没有科学依据。所有使用基因编辑(GEE)的生物体的 DNA 都已通过新的强大技术改变,但这也带来了不确定性。这在上面有关新基因工程方法的部分中有描述。 PB 突变和自然突变相同的说法在另一个方面也是站不住脚的:它在很大程度上忽视了 PB 突变在生理和生态层面上可能产生的影响,也就是风险评估所涉及的后果。 (VKM 2021:125) 8
摘要。Amelia T,Liliasari,Kusnadi,AditiawatiP.2023。从铝土矿采矿区分离和表征重金属还原的土著细菌。生物多样性24:5096-5104。这项研究旨在隔离,鉴定和表征来自印度尼西亚Bintan Island的Tanjungpinang以前的铝土矿采矿区的某些土著细菌菌株。此外,这项研究的重点是评估这些细菌减少重金属铅(PB)和铬(CR)的潜力。在四个采样点上的重金属浓度,土壤样品作为细菌来源的收集以及实验室评估都进行了生物驱动能力。进行了筛查实验,以使用基本的生长培养基,例如营养琼脂(NA)和富含100 ppm pb和Cr金属的营养汤(NB),以鉴定对重金属抗性的细菌菌株。用原子吸收分光光度法(AAS)分析了重金属的还原,而使用MALDI TOF-MS测定了细菌物种。柯比鲍尔方法的修改版本用于降低毒性测试。两种细菌菌株被鉴定为PB和CR还原器,并表现出对两种金属的抗性。基于99.9%的相似性值,分离株被鉴定为阿甲基芽孢杆菌(分离株A)和肺炎克雷伯氏菌(分离株B),将PB降低了约72.7%和34.5%,CR分别降低了87.4%和86.2%。结果表明,富含金属的培养基的毒性降低,在孵育三个小时后,细菌生长,但在21小时后没有毒性。
对称能量及其密度依赖性是许多核物理和天体物理学应用的关键输入,因为它们确定了从核的中子皮肤厚度到外壳厚度到中子星的半径。最近,Prex-II报告的值为0。283±0。071 FM的中子皮肤厚度为208 pb,这意味着斜率参数106±37 MEV,比从显微镜计算和其他核实验获得的大多数范围大。我们使用基于高斯过程的状态表示的非参数方程来限制对称能量S 0,L和R 208 Pb皮肤直接从具有最小建模假设的中子星的观察结果中观察到。产生的天体物理约束来自重脉冲质量,Ligo/处女座,而较好的人显然偏爱中子皮肤和L的较小值,以及负对称性不压缩性。将天体物理数据与prex-II和手性效能的结构理论约束结合得出S 0 = 33。0 +2。0-1。8 MeV,L = 53 +14-15 MeV,R 208 Pb Skin = 0。17 +0。04-0。04 FM。
目标1核心小组成员角色网络/组织Michael McGuigan(MM)临床领导西北乔纳森少女数据质量经理西北部Emma Savage Nove Manager Yorkshire和Humber名称角色网络/组织Tamsyn Nicole顾问西南菲利帕Bowen(PB)顾问(PB)顾问西南DAN LEACH(DL)临床教练Bristol Marlon Marlon Morais Morais Morais(Mam)GP GP GP GP GP GP GP GP