1。Araldi,R.P。等人,定期散布的短篇小说重复序列(CRISPR/CAS)工具的医疗应用:全面的概述。基因,2020年。745:p。 144636。2。Frangoul,H.,T.W。 ho和S. corbacioglu,CRISPR-Cas9基因编辑,用于镰状细胞疾病和β-杂质贫血。 回复。 n Engl J Med,2021。 384(23):p。 E91。 3。 groenen,P.M.A。等人,DNA多态性的性质,在分枝杆菌 - 链球菌的直接重复簇中 - 通过一种新型分型方法施用应变分化的应用。 分子微生物学,1993。 10(5):p。 1057-1065。 4。 Ishino,Y。等,IAP基因的核苷酸 - 序列,负责大肠杆菌中碱性磷酸酶同工酶的转化,以及基因产物的鉴定。 细菌学杂志,1987年。 169(12):p。 5429-5433。 5。 Chen,J.S。 和J.A. doudna,Cas9及其CRISPR同事的化学。 自然评论化学,2017年。 1(10)。 6。 Doudna,J.A。 和E. Charpentier,带有CRISPR-CAS9的基因组工程的新领域。 科学,2014年。 346(6213):p。 1077-+。 7。 Whinn,K.S。等人,Nuclease Dead Cas9是用于DNA复制的可编程障碍。 科学报告,2019年。 9。 8。 tsai,S.Q。等,指南seq可以通过CRISPR-CAS核酸酶对靶向裂解的全基因组进行分析。 自然生物技术,2015年。 9。Frangoul,H.,T.W。ho和S. corbacioglu,CRISPR-Cas9基因编辑,用于镰状细胞疾病和β-杂质贫血。回复。n Engl J Med,2021。384(23):p。 E91。3。groenen,P.M.A。等人,DNA多态性的性质,在分枝杆菌 - 链球菌的直接重复簇中 - 通过一种新型分型方法施用应变分化的应用。分子微生物学,1993。10(5):p。 1057-1065。4。Ishino,Y。等,IAP基因的核苷酸 - 序列,负责大肠杆菌中碱性磷酸酶同工酶的转化,以及基因产物的鉴定。细菌学杂志,1987年。169(12):p。 5429-5433。5。Chen,J.S。 和J.A. doudna,Cas9及其CRISPR同事的化学。 自然评论化学,2017年。 1(10)。 6。 Doudna,J.A。 和E. Charpentier,带有CRISPR-CAS9的基因组工程的新领域。 科学,2014年。 346(6213):p。 1077-+。 7。 Whinn,K.S。等人,Nuclease Dead Cas9是用于DNA复制的可编程障碍。 科学报告,2019年。 9。 8。 tsai,S.Q。等,指南seq可以通过CRISPR-CAS核酸酶对靶向裂解的全基因组进行分析。 自然生物技术,2015年。 9。Chen,J.S。和J.A.doudna,Cas9及其CRISPR同事的化学。自然评论化学,2017年。1(10)。6。Doudna,J.A。 和E. Charpentier,带有CRISPR-CAS9的基因组工程的新领域。 科学,2014年。 346(6213):p。 1077-+。 7。 Whinn,K.S。等人,Nuclease Dead Cas9是用于DNA复制的可编程障碍。 科学报告,2019年。 9。 8。 tsai,S.Q。等,指南seq可以通过CRISPR-CAS核酸酶对靶向裂解的全基因组进行分析。 自然生物技术,2015年。 9。Doudna,J.A。和E. Charpentier,带有CRISPR-CAS9的基因组工程的新领域。科学,2014年。346(6213):p。 1077-+。7。Whinn,K.S。等人,Nuclease Dead Cas9是用于DNA复制的可编程障碍。科学报告,2019年。9。8。tsai,S.Q。等,指南seq可以通过CRISPR-CAS核酸酶对靶向裂解的全基因组进行分析。自然生物技术,2015年。9。33(2):p。 187-197。Wang,Y。等人,CRISPR系统的特异性分析揭示了脱靶基因编辑的大大增强。科学报告,2020年。10(1)。10。Zuccaro,M.V。等人,在人类胚胎中Cas9裂解后的等位基因特异性染色体去除。单元格,2020。183(6):p。 1650-+。11。Aschenbrenner,S。等人,将Cas9耦合到人工抑制域增强了CRISPR-CAS9目标特异性。科学进步,2020年。6(6)。12。Bondy-DeNomy,J。等人,抗Crispr蛋白抑制CRISPR-CAS的多种机制。自然,2015年。526(7571):p。 136-9。13。Khajanchi,N。和K. Saha,通过小分子调节进行体细胞基因组编辑,控制CRISPR。mol ther,2022。30(1):p。 17-31。14。Han,J。等人,对小分子药物的超敏反应。前疫苗,2022年。13:p。 1016730。15。Pettersson,M.和C.M. 机组人员,针对嵌合体的蛋白水解(Protacs) - 过去,现在和未来。 Div drug Discov Today Technol,2019年。 31:p。 15-27。 16。 Bondeson,D.P。 和C.M. 机组人员,小分子靶向蛋白质降解。 药理学和毒理学年度评论,第57卷,2017年。 57:p。 107-123。 17。 li,R。等人,癌症治疗中的蛋白水解靶向嵌合体(Protac):现在和未来。 分子,2022。 27(24)。 18。Pettersson,M.和C.M.机组人员,针对嵌合体的蛋白水解(Protacs) - 过去,现在和未来。Div drug Discov Today Technol,2019年。31:p。 15-27。16。Bondeson,D.P。 和C.M. 机组人员,小分子靶向蛋白质降解。 药理学和毒理学年度评论,第57卷,2017年。 57:p。 107-123。 17。 li,R。等人,癌症治疗中的蛋白水解靶向嵌合体(Protac):现在和未来。 分子,2022。 27(24)。 18。Bondeson,D.P。和C.M.机组人员,小分子靶向蛋白质降解。药理学和毒理学年度评论,第57卷,2017年。57:p。 107-123。17。li,R。等人,癌症治疗中的蛋白水解靶向嵌合体(Protac):现在和未来。分子,2022。27(24)。18。Farasat,I。和H.M. SALIS,一种CRIS/CAS9活性的生物物理模型,用于基因组编辑和基因调节的合理设计。 PLOS Comput Biol,2016年。 12(1):p。 E1004724。Farasat,I。和H.M. SALIS,一种CRIS/CAS9活性的生物物理模型,用于基因组编辑和基因调节的合理设计。PLOS Comput Biol,2016年。12(1):p。 E1004724。
1. Araldi, RP 等人,成簇的规律间隔的短回文重复序列 (CRISPR/Cas) 工具的医学应用:全面概述。基因,2020 年。745:第 144636 页。2. Frangoul, H.、TW Ho 和 S. Corbacioglu,CRISPR-Cas9 基因编辑用于镰状细胞病和β-地中海贫血。回复。N Engl J Med,2021 年。384 (23):第 e91 页。3. Groenen, PMA 等人,结核分枝杆菌直接重复簇中 DNA 多态性的性质 - 一种新型分型方法在菌株区分中的应用。分子微生物学,1993 年。10 (5):第 1057-1065 页。 4. Ishino, Y. 等人,大肠杆菌中负责碱性磷酸酶同工酶转化的 Iap 基因的核苷酸序列及其基因产物的鉴定。细菌学杂志,1987 年。169 (12):第 5429-5433 页。5. Chen, JS 和 JA Doudna,Cas9 及其 CRISPR 同事的化学反应。自然评论化学,2017 年。1 (10)。6. Doudna, JA 和 E. Charpentier,使用 CRISPR-Cas9 进行基因组工程的新前沿。科学,2014 年。346 (6213):第 1077-+ 页。7. Whinn, KS 等人,核酸酶死亡 Cas9 是 DNA 复制的可编程障碍。科学报告,2019 年。9 月。8. Tsai, SQ 等人,GUIDE-seq 可对 CRISPR-Cas 核酸酶的脱靶切割进行全基因组分析。自然生物技术,2015 年。33 (2):第 187-197 页。9. Wang, Y. 等人,CRISPR 系统的特异性分析揭示了大大增强的脱靶基因编辑。科学报告,2020 年。10 (1)。10. Zuccaro, MV 等人,Cas9 切割人类胚胎后去除等位基因特异性染色体。细胞,2020 年。183 (6):第 1650-+ 页。11. Aschenbrenner, S. 等人,将 Cas9 与人工抑制结构域耦合可增强 CRISPR-Cas9 靶向特异性。 Science Advances,2020 年。6 (6)。12. Bondy-Denomy, J. 等人,抗 CRISPR 蛋白抑制 CRISPR-Cas 的多种机制。Nature,2015 年。526 (7571):第 136-9 页。13. Khajanchi, N. 和 K. Saha,通过小分子调控控制 CRISPR 进行体细胞基因组编辑。Mol Ther,2022 年。30 (1):第 17-31 页。14. Han, J. 等人,对小分子药物的超敏反应。Front Immunol,2022 年。13:第 1016730 页。15. Pettersson, M. 和 CM Crews,蛋白水解靶向嵌合体 (PROTAC) - 过去、现在和未来。 Drug Discov Today Technol,2019. 31:第 15-27 页。16. Bondeson, DP 和 CM Crews,小分子靶向蛋白质降解。Annual Review of Pharmacology and Toxicology,第 57 卷,2017 年。57:第 107-123 页。17. Li, R.,等人,蛋白水解靶向嵌合体 (PROTAC) 在癌症治疗中的应用:现在和未来。Molecules,2022 年。27 (24)。18. Farasat, I. 和 HM Salis,用于合理设计基因组编辑和基因调控的 CRISPR/Cas9 活性的生物物理模型。PLoS Comput Biol,2016 年。12 (1):第 e1004724 页。
[2] B. Chaudhuri,G。Sardar,MD。Masud,J Uddin,B。K。Chaudhuri和K. Pramanik。 观察聚乙烯醇/聚乙烯基吡咯烷酮混合 - 羟基磷灰石和氧化石墨烯复合材料中的电导率和介电常数;使用人脐带血干细胞的生物相容性研究。 proc。 int。 聚合物科学技术研讨会,加尔各答(1月23-26日)P-522,PB10(2015)。Masud,J Uddin,B。K。Chaudhuri和K. Pramanik。观察聚乙烯醇/聚乙烯基吡咯烷酮混合 - 羟基磷灰石和氧化石墨烯复合材料中的电导率和介电常数;使用人脐带血干细胞的生物相容性研究。proc。int。聚合物科学技术研讨会,加尔各答(1月23-26日)P-522,PB10(2015)。
南方海洋在大气CO 2隔离中起着关键作用,占现代海洋吸收的人为CO 2的约40-50%(Landschützer等,2015; Gruber等,2019)。南大洋在调节轨道和千禧年时标的地质过去的二氧化碳(P CO 2)的大气部分压力方面也起着关键作用(Anderson等,2009; Sigman等,2010; Gottschalk等,2016)。此外,南大洋对热带地区的大气和海洋循环影响远程影响,包括低纬度大气CO 2交流(Sarmiento等,2004; Hendry and Brzezinski,2014; Sigman等,Sigman等,2021)。因此,南大洋是全球气候系统的关键组成部分,其对大气CO 2在一系列时标的大气中的影响(Fischer等,2010; Rae等,2018; Dong等,2024)。然而,南大洋的过程和机制对大气P CO 2和全球气候变化的影响仍未得到充分了解。为了填补这一差距,该研究主题整合了现代观察结果,古气候数据和模型模拟的结果,以从碳周期的角度促进全球气候变化中对南方海洋的重要性的全面理解。该研究主题收集了12篇文章,其中包括11篇原始研究文章和1个观点文章。这些文章可以分类为下面探讨的三个主题。文章集中于碳和其他营养因素和水量因子的原位分析,拆卸循环对大气P CO 2的影响的最新进展以及碳循环(相关)过程的古生证重建。
线粒体在真核细胞的生命周期中起着至关重要的作用。但是,我们仍然不知道它们的超微结构(例如内膜的cristae)如何动态发展以调节这些基本功能,以响应外部条件或与其他细胞成分相互作用。尽管高分辨率的荧光显微镜与最近开发的创新探针可以揭示该结构组织,但它们的长期,快速和实时3D成像仍然具有挑战性。为了解决这个问题,我们开发了一个称为DeepCristae的卷积神经网络,以恢复低空间分辨率显微镜图像中的线粒体cristae。我们的网络是使用专门为Cristae修复设计的新型损失从2D Sted图像训练的。为了有效地增加训练集的大小,我们还开发了一个以线粒体区域为中心的随机图像贴片采样。为了评估deepcristae,使用我们得出的指标来进行定量评估,我们通过关注线粒体和cristae像素而不是像往常一样在整个图像上进行了定量评估。根据所示的使用条件,DeepCristae在广泛的显微镜模态(刺激的发射耗尽(STED),Live-SR,Airyscan和Lattice Light片显微镜下都很好地工作。它最终是在与内托/溶酶体膜相互作用期间的线粒体网络动力学的上下文中应用的。
AxoScope 软件是 Clampex 软件的一个子集。AxoScope 软件中提供 HumSilencer™ 自适应噪音消除系统。AxoScope 软件提供多种连续数据采集模式,但没有偶发刺激模式,这意味着无法生成刺激波形。膜测试不包括在内。Clampex 软件中的其他高级功能,如 LTP 助手、结电位计算器和仪器电报机均不包括在内。使用可选附件 MiniDigi 数字转换器,您可以将 AxoScope 软件用作在实验期间与 Clampex 软件一起运行的背景图表记录器。
•Barclays销售或交易台,该订单发起的订单将具有与所有客户算法和SOR订单相同的盘中和贸易后的可见性。请参阅barx.com/eqdisclosures提供的股票电子订单处理,算法和智能订单路由器常见问题解答(“ algos and sor FAQ”),以获取更多信息。•所有Capcomm填充物都在高点式现金交易台上便利。除非Capcomm促进的客户订单在高压现金交易台上工作,否则高压现金交易台将无法访问交易日期的任何客户识别或父母订单信息。•此后,除非客户授权可见性,否则在高音交易台上工作了ALGOS和SOR FAQ或CAPCOMM促进的客户订单,否则客户的身份将在High-Touch Cash Trading Desk中匿名。此外,出于内部风险管理的目的,管理层可以收到有关Capcomm促进因素的总风险暴露的日内警报。警报包括买入和出售执行的汇总名义价值,以及未执行的Capcomm订单的汇总名义值。未提供有关价格,订单数量,侧面,符号或客户端的信息。某些其他员工可能会根据需要可见订单相关数据。有关客户信息机密性的更多信息,请参考barx.com/eqdisclosures上可用的Algos和SOR常见问题。
摘要 - 本文介绍了MapComp,这是一个基于视图的新型框架,以促进合作分析的结合组 - 聚集(JGA)查询。通过特殊精心制作的物质视图和组合协议的新颖设计,MAPCOMP删除了重复的加入工作负载,并加快了随后的GA,从而提高了JGA查询执行的效率。为了支持连续的数据更新,我们实现的视图提供了独立的有效载荷功能,并带来了显着提高视图的效率,并使用免费的MPC开销来刷新。此功能还允许GA的进一步加速,我们在其中设计了多个优于先验工作的新颖协议。值得注意的是,我们的工作代表了使用实质性视图加快安全协作JGA查询的第一个努力。我们的实验在我们的视图操作和GA协议方面有了很大的改进,达到了零刷新时间和1140。分别比基线快5×。此外,我们的实验证明了MAPCOMP的重要优势,达到2189。9倍效率的提高与执行查询八次时基于非视图的基线相比。
海洋酸化会显着影响牡蛎等海洋钙化剂,保证研究分子机制(如DNA甲基化),这些机制响应环境变化而导致自适应可塑性。然而,在海洋无脊椎动物中,甲基化模块基因表达和可塑性的程度尚未达成共识。在这项研究中,我们研究了PCO 2对基因表达和DNA甲基化的影响,在牡蛎crassostrea virginica中。暴露于30天的对照(572 ppm)或升高的PCO 2(2,827 ppm)后,由成年雌性性腺组织和雄性精子样本产生了整个基因组Bisulfite测序(WGB)和RNA-SEQ数据。尽管在女性(89)和雄性(2,916)中鉴定出差异化甲基化的基因座(DML),但没有差异表达的基因,并且在女性中只有一个差异表达的转录本。然而,基因体甲基化影响了精子中其他形式的基因活性,例如每个基因表达的最大转录本数以及表达的主要转录本的变化。升高的PCO 2暴露增加了男性基因表达变异性(转录噪声),但女性的噪声降低,表明甲基化在基因表达调节中的性别特异性作用。对转录级表达变化或含有DML的基因的功能注释显示,有几个富集的生物学过程可能参与了升高的PCO 2响应,包括凋亡途径和信号转导,以及生殖功能。综上所述,这些结果表明,DNA甲基化可能调节基因表达变异性,以维持升高的PCO 2条件下的稳态,并且可能在海洋无脊椎动物的环境弹性中发挥关键作用。
1 俄罗斯科学院托木斯克国立研究医学中心癌症研究所核医学系,邮编 634055 托木斯克,俄罗斯;chernov1962@gmail.com (VC);medvedeva@tnimc.ru (AM);pankovaan@mail.ru (AR);rungis@mail.ru (OB);liza.mishina.00@inbox.ru (EM) 2 托木斯克理工大学化学与应用生物医学科学研究学院肿瘤治疗学研究中心,邮编 634050 托木斯克,俄罗斯;mr.varvashenya@mail.ru (RV);anastasia.527@yandex.ru (AF);schulga@gmail.com (AS);elena.ko.mail@gmail.com (EK) biomem@mail.ru (SMD) 3 西伯利亚国立医科大学药物分析系,634050 托木斯克,俄罗斯 4 俄罗斯科学院 Shemyakin-Ovchinnikov 生物有机化学研究所,117997 莫斯科,俄罗斯 5 乌普萨拉大学免疫学、遗传学和病理学系,75185 乌普萨拉,瑞典;anzhelika.vorobyeva@igp.uu.se (AV);vladimir.tolmachev@igp.uu.se (VT) 6 乌普萨拉大学药物化学系,75185 乌普萨拉,瑞典;anna.orlova@ilk.uu.se 7 俄罗斯科学院托木斯克国立医学研究中心癌症研究所癌症分子治疗实验室,634055 托木斯克,俄罗斯; lkleptsova@mail.ru * 通讯地址:r.zelchan@yandex.ru(俄罗斯联邦);marialarkina@mail.ru(毛里求斯)
