蒙特 - 圣加伯特,比利时,2024年8月13日,Cest下午1点00,BiosEnic(Biosexic(欧洲文本布鲁塞尔和巴黎:BIOS:BIOS),这家临床阶段的公司,专门针对严重的自身免疫性疾病和炎症性疾病和细胞治疗,今天宣布它已收到了Abo infinium op efinium op op op op op op opco ltd。下面列出了透明性通知的详细信息,并在“主要股东和透明度通知”标题下,在BiosEnic网站上咨询透明性通知的全文。透明性通知表明,ABO Infinium Americas Opco Ltd持有的BiosEnic股份附带的投票权。由于获得了BiosEnic的股票,因此已经超过5%的阈值。从ABO Infinium Americas Opco Ltd收到的通知。日期为2024年8月9日,包含以下信息:
作者高亚民 1,2,3,4,# , 方翠婷 1,2,3,4,# , 周彪 1,5,6 , HM Adnan Hameed 1,2,3,4 , 孙长利 3,7 , 田西荣 1,2,3,4 , 何静 1,2,4,8 , 韩杏丽 1,2,3,4 , 张涵1,2,4,9 , 李军 10 , 居建华 3,7 , 陈新文 6 , 钟南山 6 , 马俊英 3,7,* , 熊晓丽 1,2,3,6,* , 张天宇 1,2,3,4,6,* 单位 1 中国科学院广州生物医药与健康研究院呼吸疾病国家重点实验室,广州510530,中国。 2 中国科学院广州生物医药与健康研究院粤港澳传染性呼吸道疾病联合实验室,广州 510530。3 中国科学院大学,北京 100049。4 中国科学院广州生物医药与健康研究院中国-新西兰“一带一路”生物医药与健康联合实验室,广州 510530。5 广州医科大学,广州 510180。6 广州国家实验室,广州 510005。7 中国科学院热带海洋生物资源与生态重点实验室、广东省海洋药物重点实验室、中国科学院南海海洋研究所海洋微生物研究中心,广州 510301。8 安徽大学物质科学与信息技术研究所,合肥 230601。 9 中国科学技术大学生命科学学院,合肥 230026。10 上海科技大学上海免疫化学研究所、生命科学与技术学院,上海 201210。
这些诉讼是在 COVID-19 大流行的背景下发生的 .................... [1] 双方就主要问题达成一致 .............................................................................. [15] 诉讼被当局移交给法院 ............................................................................ [17] 法院得到了专家证据的协助 ............................................................................ [19] 威尔斯副教授受雇于大学医学和健康科学学院 ......................................................................................... [20] 威尔斯副教授提出了担忧 ......................................................................................... [23] 大学对威尔斯副教授的“校外活动”提出了质疑 ............................................................................. [57] 威尔斯副教授的主张在她的索赔声明中 ............................................................. [72] 大学扮演着批评家和社会良知的角色 ............................................................. [80] 集体协议涉及公众评论和学术自由 ......................................................................................................... [91] 学术人员可以从事校外活动 ............................................................................. [92]
中小型企业由于缺乏措施控制以及无法阻止无管理设备中对公司资源的访问而受到对抗的高风险。此重新搜索使用JumpCloud探索了零信任体系结构的实现。主要目标是评估JumpCloud如何通过其各种功能(包括设备管理,单登录(SSO)和条件访问策略)来增强网络安全。该研究涉及对JumpCloud的技术功能的详细分析,例如对Linux,Windows,MacOS,Android和iOS,密码管理,无密码的身份验证,零触摸部署,多因素身份验证,策略和补丁程序和API服务的操作系统支持。通过成本效益分析评估了不同SSO集成方法的优点和缺点。结果表明,JumpCloud使用不同的操作系统提供了一个全面的平台,用于管理和保护端点,身份和SaaS应用程序的SSO。通过利用JumpCloud,组织可以增强其安全姿势,简化IT操作,并降低与未托管设备相关的风险。通过与JumpCloud创建Google Workspace SSO集成,并遵循最佳的校外实践,与将系统用于跨域身份管理(SCIM)相比,中小企业可以实现大量的成本节省。这项研究的发现是,通过有条件的访问策略,使用JumpCloud的许多功能可以改善SME的安全性,并且可以通过现代端点防御和响应(EDR)应用程序实现零信任的宗旨。总体而言,如果使用和配置正确,JumpCloud是一个统一的统一端点管理(UEM)系统,它与最新的网络安全标准保持一致,为中小企业提供了强大的解决方案,旨在采用零信任安全计划。
摘要 - 作为深度学习(DL)模型的大小不断增长,使用大量设备(例如GPU)和服务器的分布式模型学习迫切需要。设备/服务器之间的集体通信(用于梯度同步,中间数据交换等)介绍了特殊的间接开销,从而在分布式学习中呈现了主要的性能瓶颈。已经开发了许多通信库,例如NCCL,GLOO和MPI,以优化对沟通的沟通。预定义的通信策略(例如,环或树)在很大程度上被采用,这可能不足以有效或适应性用于机间通信,尤其是在基于云的场景中,实例配置和网络性能可能会有很大差异。我们提出了ADAPCC,这是一个新颖的通信库,该库动态适应了资源的性质和网络变异性,以优化通信和培训性能。ADAPCC基于运行时分析生成通信策略,减少资源浪费在等待计算过程中,并在DL工人之间执行有效的数据传输。与NCCL和其他代表性通信后端相比,在各种设置下的实验结果表明了2倍的通信加速和31%的训练吞吐量改善。索引条款 - 分配培训,集体沟通
大米是全球一半人口的主食。基于表型的传统和标记辅助选择方法已用于稻米改进,但它们既耗时,昂贵又富有劳动力。因此,提高水稻产量的新型育种策略的研究和实施是一个很高的优先事项。基因组选择(GS)为克服这些局限性铺平了道路(Yu等,2016)。有效应用GS育种模型的主要因素是建造具有涵盖目标选择材料的基因组多样性的大规模培训人群(Fu等,2022)。然而,在应用水稻育种计划中的一般人群的实际实施仍处于新生阶段,并且对各种特征的基因组可预测性的全面评估尚未进行。为建造一个普遍代表的培训人群,我们编制了第一个中国耕种的水稻人口(CCRP),其中包括来自25个中国省份的4015个水稻加入,涵盖了五个主要的水稻种植地区,这些地区占中国年总水稻种植面积的99%以上(图1A; tables S1和S2)。这些加入包括1943年的Indica和2072 Japonica水稻加入,其中96%以上是品种和育种线(图1B;表S1和
©作者2023。Open Access本文是根据Creative Commons Attribution 4.0 International许可获得许可的,该许可允许以任何媒介或格式使用,共享,适应,分发和复制,只要您对原始作者和来源提供适当的信誉,请提供与创意共享许可证的链接,并指出是否进行了更改。本文中的图像或其他第三方材料包含在文章的创意共享许可中,除非在信用额度中另有说明。如果本文的创意共享许可中未包含材料,并且您的预期用途不受法定法规的允许或超过允许的用途,则您需要直接从版权所有者那里获得许可。要查看此许可证的副本,请访问http://创建ivecommons。org/licen ses/by/4。0/。Creative Commons公共领域奉献豁免(http://创建ivecommons。Org/publi cdoma in/Zero/1。0/1。0/)适用于本文中提供的数据,除非在数据信用额度中另有说明。
地址:860 Centennial Ave. Piscataway NJ 08854 电话:1-732-885-9188 免费电话:1-877-436-7274 传真:1-732-210-0262
摘要。南洋在大气和海洋之间的碳交换中起着重要作用,并且是海洋吸收人为CO 2的关键区域。然而,由于数据覆盖率有限,南大洋航空CO 2频率的估计值高度不确定。在冬季和整个南洋的子午梯度中进行的采样可改善全球表面海洋P CO 2的机器学习(ML)重建。在这里,我们使用地球系统模型的大集合测试床(LET)和“ P CO 2-分离”重建方法来评估P CO 2重建效果的改进,可以通过添加到现有的Surface Surface Ocean Co 2 Atlas(So-Cat)的Surean Surean Surean Surean中的额外自主采样来实现,这些方法可以实现。让LET允许通过与“模型真实”进行比较,对P CO 2重建的技能进行强有力的评估。只有SOCAT采样,南大洋和全球P CO 2被高估了,因此海洋碳汇被低估了。纳入未拧紧的表面车辆(USV)采样,刺激了南大洋内观测的空间和季节性覆盖范围,从而减少了P CO 2的过度估计。与单独的采样相比,南半球冬季和整个南大洋的子午梯度的额外观察结果分别导致重建偏见和根平方方误差(RMSE)的改善分别为86%和16%。最后,通过仅社会采样显示的空气–EA CO 2频道的大型衰老变化可能部分归因于南方海洋的不足采样。
摘要 P-钙粘蛋白 (pCAD) 和 LI-钙粘蛋白 (CDH17) 是属于钙粘蛋白超家族的细胞表面蛋白,在结直肠癌中均有高表达。这种共表达谱为使用抗体-药物偶联物 (ADC) 的双重靶向方法提供了一个新颖且有吸引力的机会。在这项研究中,我们使用了一种独特的亲和力驱动的体外筛选方法来生成 pCAD x CDH17 双特异性抗体,该抗体选择性地靶向表达两种抗原的细胞,而不是仅表达 pCAD 或仅表达 CDH17 的细胞。根据体外结果,我们选择了一种领先的双特异性抗体来连接到细胞毒性有效载荷 MMAE 以生成 pCAD x CDH17 双特异性 MMAE ADC。在体内双侧腹小鼠模型中,我们证明了双特异性 ADC 在表达两种抗原的肿瘤中的抗肿瘤活性,但在仅表达 pCAD 或仅表达 CDH17 的肿瘤中没有。总体而言,此处提供的临床前数据表明 pCAD x CDH17 双特异性 MMAE ADC 有可能为结直肠癌患者带来临床益处。
