用户控制图片(亮度、对比度、清晰度、背景级别、色调、颜色、降噪、伽玛选择、低蓝光、色温、颜色控制、过扫描、图片重置)、屏幕(缩放模式、自定义缩放、屏幕重置)、音频(平衡、高音、低音、音量、音频输出(线路输出)、最大。音量,最小。音量、静音、音频重置、音频输出同步、扬声器设置)、配置 1(Android 启动器、开启状态、触摸锁、触摸模式、鼠标模式、面板保存、RS232 路由、启动源、WOL、conf.1 重置、恢复出厂设置)、配置 2(OSD 超时、OSD H 位置、OSD V 位置、系统旋转、信息 OSD、徽标和动画、徽标设置、动画设置、显示器 ID、显示器信息、HDMI 版本、conf.2 重置)、高级选项(信息亭模式、侧边栏、无信号图像、电动支架、红外控制、电源 LED 灯、风扇、关闭定时器、时间表、单线 HDMI、单线 HDMI 关闭、故障转移、语言、OSD 透明度、省电、高级选项重置)
本报告总结了普渡大学工程与科学学院在为期四年的 AFOSR 大学研究计划期间进行的研究,该计划重点关注处理老化飞机的基本问题。该计划的协调目标分为四个主要类别:损伤发展、裂纹扩展和相互作用预测、故障预防技术和高级分析方法。损伤发展目标解决了腐蚀、疲劳裂纹形成 MI 和微动磨损的失效机制。裂纹扩展和相互作用任务的总体目标是开发预测服务引起的裂纹扩展的技术,并确定大面积开裂对损伤容限的影响。故障预防项目的主题是制定程序,通过延迟服务引起的损坏、修复有裂纹的结构以及采用机队跟踪方法对机队内的维护行动进行优先排序,从而延长“老旧”飞机的使用寿命。最后,研究旨在开发其他研究任务中使用的“高级”分析方法。这些项目涉及在各种材料评估和结构分析中添加统计成分,并制定与飞机材料和结构相关的延性断裂标准。
军事校园区教育和住宅综合体19 和伊尔库茨克的升级。它还具有重大的社会意义。不幸的是,年轻的西伯利亚人,伊尔库茨克和伊尔库茨克地区的居民,从小就决定从事军事生涯,却没有机会在自己的家乡实现自己的抱负。今天在俄罗斯,苏沃洛夫军事学校在叶卡捷琳堡、喀山、莫斯科、弗拉季卡夫卡兹、圣彼得堡、特维尔和乌里扬诺夫斯克运营。俄罗斯年轻人有机会进入明斯克苏沃洛夫军事学校。在每种情况下,我们都在谈论我们地区以外的军事教育机构。这涉及到远离家乡、外出度假的困难以及青少年的士气和心理稳定。伊尔库茨克苏沃洛夫军校的出现,将为许多孩子提供机会
空间•空间是设计师调色板和室内设计中典型元素的主要成分。•通过空间的数量,我们不仅移动;我们看到形式,听到声音,感觉温柔的微风和阳光的温暖,并闻到花朵中花朵的香气。•空间继承了元素在其领域的感性和美学特征。•空间不是石材和木材之类的物质物质。•它本质上是无形的和分散的。•通用空间没有定义边界。•但是,一旦将元素放置在其领域,就建立了视觉关系。由于将其他元素引入了领域,因此在空间和元素之间以及元素本身之间建立了多个关系。•空间是通过我们对这些关系的感知而形成的。空间是对象和事件发生的无限,三维范围,具有相对位置和方向
加州大学圣克鲁斯分校的校园空间是一种有限的资源。从历史上看,加州大学圣克鲁斯分校并没有提供全面的校园空间分配指南。因此,多年来,大学内的许多部门都制定了自己的指南和程序。随着校园空间继续受到限制,而建造新空间的成本不断增加,加州大学圣克鲁斯分校再次需要制定一系列明确的指南,以确保切实有效的空间规划,从而优化有限的可用空间。这些指南为规划新空间提供了明确的方向,并作为评估现有空间的基础。作为校园,我们将识别和纠正与大学使命不符的低效率,并在切实可行的情况下寻求与这些指南保持一致。
摘要 数字孪生 (DT) 主要是任何可想象的物理实体的虚拟复制品,是一项具有深远影响的高度变革性技术。无论是产品开发、设计优化、性能改进还是预测性维护,数字孪生都在通过多种多样的业务应用改变各个行业的工作方式。航空航天业(包括其制造基地)是数字孪生的热衷者之一,对其定制设计、开发和在更广泛的运营和关键功能中的实施表现出前所未有的兴趣。然而,这也带来了一些对数字孪生技术的误解,以及对其最佳实施缺乏了解。例如,将数字孪生等同于智能模型,而忽略了数据采集和可视化的基本组成部分,会误导创建者构建数字阴影或数字模型,而不是实际的数字孪生。本文揭示了数字孪生技术在航空航天领域以及其他领域的复杂性,以消除影响其在安全关键系统中有效实现的谬误。它包括对数字孪生及其组成元素的全面调查。阐述了它们特有的最先进的组成以及相应的局限性,提出了航空航天领域未来数字孪生的三个维度,称为航空数字孪生(aero-DT),作为本次调查的结果。这些包括数字孪生的交互、标准化和认知维度,如果认真利用这些维度,可以帮助航空 DT 研发界将现有和未来航空航天系统及其相关流程的效率提高四倍。
参考 (b) 规定了所有联邦机构在空间分配和使用方面的一般政策和指导方针。经总务管理局公共建筑服务处处长的同意,以下空间限额将用作国防部国家首都地区占用指南,代替空间表。参考 (b) 中显示的限额。
空气动力学、结构、材料、推进、电子和系统。NAL 在 20 世纪 70 年代最杰出的工程成就是开发了用于测试飞机疲劳寿命的全尺寸疲劳试验设施,这对延长各种飞机的寿命做出了重大贡献。到 20 世纪 70 年代中期,NAL 已成为印度航空领域的主要参与者之一。它被公认为管理最完善的国家实验室,承担了 100 多个航空航天领域的高科技研发项目。NAL 在此期间活动的一个非常引人注目的特点是数字“”·设备开发能力范围令人惊叹,例如数据记录和负载测量系统、温度控制器等。一个非常成功的故障分析和事故调查小组逐渐发展起来。这项活动旨在满足印度航空航天组织的需求。许多涉及飞机、直升机和用于国防飞机的地面设备的事件/事故的调查被 IAF(印度空军)、HAL(印度斯坦航空有限公司)、MoCA(民航部)等提交给实验室进行调查。截至目前,该小组已调查了 1,500 多起民用和军用飞机事故/事件。NAL 将探索在故障分析中引入人工智能 (AI) 和数据分析,以快速获得结果。纤维增强塑料 (FRP) 试验工厂的建立是为了建造大型机鼻雷达罩来容纳敏感的电子设备。
近年来,太空探索工作越来越集中于对火星和月球等行星和卫星的表面探索。这是通过使用流浪者来实现的,流浪者能够跨天体旅行并进行研究活动。但是,完成任务可能具有挑战性,必须及时解决问题,以避免丢失Sciminific Data甚至Rover本身。鉴于与火星(Olson,Matthies,Wright,Li,&di)的有限通信能力,必须迅速检测到异常,因为没有现场人工干预的可能性。要面对这个问题,NASA分别开始开发其漫游者的物理双胞胎,例如对好奇心和毅力的乐观情绪(Cook,C。,Johnson和Hautalu-Oma)(Castelluccio,)。同时,NASA和西门子研究了一个好奇的数字双胞胎,以使用SIM-DIOSOTOPE热电学发电机(MMRTG)使用SIM-Center 3D(M.I.T.,M.I.T.,)分析和解决由多损耗ra-Dioasotope热电学发电机(MMRTG)引起的散热问题。同样,欧洲航天局
