本文中包含的陈述,技术信息和建议截至本文之日起准确。由于产品的使用条件和使用条件和方法是我们无法控制的,因此,Purolite明确违反了对任何对产品或对此类信息的使用或依赖造成的结果或产生的任何结果的责任;对于任何特定目的,适合性的保证或任何其他明示或暗示的保证,都没有关于所描述的货物或本文提供的信息的任何其他保证的保证。本文提供的信息仅与指定的特定产品有关,并且当该产品与其他材料或任何过程中使用时可能不适用。此处包含的任何内容构成根据任何专利的执业许可,也不应解释为侵犯任何专利的诱因,建议用户采取适当的步骤以确保对产品的任何建议使用不会导致专利侵权。
本文中包含的陈述,技术信息和建议截至本文之日起准确。由于产品的使用条件和使用条件和方法是我们无法控制的,因此,Purolite明确违反了对任何对产品或对此类信息的使用或依赖造成的结果或产生的任何结果的责任;对于任何特定目的,适合性的保证或任何其他明示或暗示的保证,都没有关于所描述的货物或本文提供的信息的任何其他保证的保证。本文提供的信息仅与指定的特定产品有关,并且当该产品与其他材料或任何过程中使用时可能不适用。此处包含的任何内容构成根据任何专利的执业许可,也不应解释为侵犯任何专利的诱因,建议用户采取适当的步骤以确保对产品的任何建议使用不会导致专利侵权。
抽象的地球物理观察将提供有关行星和卫星内部结构的关键信息,并理解内部结构是这些物体的批量组成和热演化的强大结合。因此,地理观测是发现月球起源和演变的关键。在本文中,我们提出了一个自主月球地球物理实验包的开发,该实验包由一套仪器和带有标准化界面的中央站组成,可以安装在各种未来的月球任务上。通过修复仪器与中央站之间的接口,可以轻松地为不同的任务配置适当的实验包。我们在这里描述了一系列可能作为地球物理包装的地球物理仪器:地震计,磁力计,热流探针和激光反射器。这些仪器将提供与内部结构密切相关的月球的机械,热和大地测量参数。我们讨论了未来对月球的地球物理观察所需的功能,其中包括中央站的开发,而中央站通常会通过不同的有效载荷使用。
CAN SIC XL物理培养基附件(PMA)Sublayer在ISO 11898-2:2024中是国际标准化的。最初,在CIA 601-4(SIC)和CIA 610-3(快速模式)文档中指定了CAN SIC XL收发器的要求,该文档已提交给ISO。NT156收发器的原型已通过CAN SIC XL收发器从Infineon,NXP和Texas Instruments在CIA CAIS CAN CAN CAN CAN CAN CAN XL Plugfest进行了成功测试。兼容性和互操作性也由沃尔芬布特尔(德国)的独立测试室C&S组测试。汽车EMC要求(IEC 62228-3)已由伊比(Ibee)在Zwickau(德国)证明。博世在去年慕尼黑(德国)的Electronica TradeShow上推出了CAN SIC XL收发器。样品将在2025年2月2日提供。根据ISO 26262(功能安全)开发芯片。根据初步数据表,NT156在隐性总线状态10 mA中以正常模式消耗,在占主导地位的总线状态54 mA中。在待机模式下,电流消耗为2 µA。用50 µs指定从备用模式到正常模式的过渡。收发器的目的是从-40°C到+150°C的连接温度。在+170°C和+200°C之间,芯片关闭,并在+150°C下释放关闭。关闭连接温度滞后是20K。最小TXD主超时为0.8 ms。芯片在V CC和V IO引脚处具有欠压检测。
1 Department of Environment and Geography Wentworth Way, University of York, Heslington, York, YO10 5NG, United Kingdom 2 Land, Environment, Economics and Policy Institute (LEEP), University of Exeter Business School, Exeter, United Kingdom 3 School of Physics and Astronomy, Cardiff University, Cardiff CF24 3AA, United Kingdom 4 Centre for Environmental and Agricultural Informatics, School of Water, Energy and Environment, Cranfield University, Cranfield MK43,英国5号环境科学学院,东安格利亚大学,英国诺里奇大学6个新颖的农产品中心(CNAP),生物学系,约克大学,约克大学,YO10 5DD,英国7公平王国7公平发展与疾病研究小组爱丁堡大学农业和食品系统。Charnock Bradley大楼,Easter Bush Campus,EH25 9RG。 9伦敦大学,伦敦大学,伦敦北安普顿大学,伦敦市,EC1V 0HB,英国10 hb,约克大学的商业与社会学院,11级全球可持续发展学院Charnock Bradley大楼,Easter Bush Campus,EH25 9RG。9伦敦大学,伦敦大学,伦敦北安普顿大学,伦敦市,EC1V 0HB,英国10 hb,约克大学的商业与社会学院,11级全球可持续发展学院
3D 打印,也称为增材制造,代表了一系列技术,这些技术使用数字图像文件(通常由计算机辅助设计 (CAD) 软件生成)通过逐层沉积过程创建 3D 对象。随着 3D 打印在过去四十年的发展,许多增材制造技术概念已经发展成为强大的独立技术,正如美国材料与试验协会 (ASTM) 国际增材制造技术委员会 F42 所定义。目前这些技术包括:桶式光聚合、粉末床熔融、材料挤出、材料喷射、粘合剂喷射、定向能量沉积和薄片层压(ASTM International,2022 年)。商用打印机将这些工程概念应用于特定应用和材料,已在各个行业中占有一席之地,每个行业都有自己的优缺点,价格也大不相同。尽管打印技术方法多种多样,但目前最广泛使用的 3D 打印机(包括消费市场)采用的是一种熔融沉积成型 (FDM) 技术,有时也称为熔融长丝制造 (FFF) 技术,该技术基于热塑性材料的挤出,热塑性材料通过加热的长丝喷嘴沉积后会变硬。就材料沉积过程而言,FDM/FFF 是一种基于挤出的打印方法,不同于其他通过液体基质的光聚合或粉末颗粒的熔合来构建结构的方法。总体而言,3D 打印如今被认为是一种有效的技术,适用于需要少量生产高度定制和定制的产品,通常以分散的方式生产,例如在偏远地区生产备件,因为它节省了设计特定制造流程来制造产品以及供应物流的成本和时间。此外,在设计、艺术和时尚领域,3D 打印机已经找到了创造独特复杂设计的空间(Gebhardt 等人,2018 年;Shahrubudin 等人,2019 年)。
本文介绍了一项有关锂离子电池的电荷观察状态,用于嵌入式应用中的能量管理。对收费状态的了解对于这些电池的安全性和最佳用途至关重要。该研究的重点是在Spartan 6 FPGA上基于Kalman滤波器的观察者算法的开发和实施,即使可以从其实际状态开始初始化电池的电池,该算法可以准确估算电池的充电状态。在本文中,我们专注于FPGA进行快速计算的机会,该计算可以将FPGA用作BMS中的从属组件,并允许以低成本观察SOC大量的单元。在低成本FPGA上实施该观察者可能会导致各种应用中的电池管理系统(例如电动汽车和任何其他需要观察电池组充电状态)的电池管理系统的成本。通过模拟和实时测试验证了观察者模型。本研究提出了一种有希望的方法,可以准确估计锂离子电池的电荷状态,以用于各种应用中的E FFI能源管理。
2 人链(绿色袋子)和 3 人链(红色袋子)胶囊的制作、包装和运输流程图。每条链重复此过程五次,每条链总共 10 个 ZLB 和 50 个胶囊。参与者 A 在包装胶囊(2 人链)时只接触胶囊(2 人链和 3 人链)和 ZLB。参与者 B 在包装成 ZLB(3 人链)时只接触胶囊,参与者 C 只接触 ZLB(2 人链和 3 人链)的外表面。图片来源:Forensic Science International:Genetics (2024)。DOI:10.1016/j.fsigen.2024.103182