- 请注意,高湿度可以促进环境中生物的生长。 - 请勿让加湿器周围区域变得潮湿或潮湿。如果出现潮湿情况,请降低加湿器的功率。如果无法降低加湿器的输出功率,请间歇使用。请勿在可能变湿的吸水材料(如地毯、窗帘、帷幔或桌布)附近使用加湿器。 - 不使用设备时,切勿将水留在水箱中。 - 存放前请清空并清洁加湿器。下次使用前请清洁加湿器。 - 连接设备前,请确保设备上标示的电压与主电压相符。 - 出于安全原因,损坏的电源线必须由飞利浦授权服务中心或具有类似资格的人员更换。 - 如果插头、电源线或设备本身损坏,请勿使用本设备。 - 在有人监督或指导的情况下,8 岁或以上的儿童、身体或精神能力有缺陷的人士以及缺乏使用本设备经验和知识的人士可以使用本设备,只要有人就设备的安全使用提供监督或指导,让他们了解所涉及的危险。儿童不应玩耍本设备。儿童不应在无人监督的情况下清洁或维护该设备。 - 如果不换水并且每 3 天不适当清洁水箱,水中或使用或存储设备的环境中的微生物可能会在水箱中生长并被吹到空气中,造成严重的健康风险。
1 机器人工程系,2 生物医学工程系,3 心理学系,4 印度泰米尔纳德邦哥印拜陀卡伦亚理工学院,5 加拿大卡尔加里大学。doi:10.15199/48.2024.09.27 使用提升小波变换进行基于熵的特征提取以对 EEG 信号进行分类摘要。在脑机接口 (BCI) 领域,一个关键的障碍在于有效地对运动想象 (MI) 信号进行分类。已经开发了许多基于脑电图 (EEG) 信号的 MI 分类技术。所提出的系统通过提升小波变换 (LWT) 将 EEG 信号转换为各种表示。长短期记忆 (LSTM) 用于对每行中提取的特征向量进行分类。在 PhysioNet 数据库上评估了该方法的性能,特别是用于区分右手和左手想象移动。该策略使得 LWT 的 72 个小波族中的 19 个的准确率达到 100%。这种组合被证明是基于 BCI 的脑电图分析的高效工具,展示了其作为该领域资源丰富的解决方案的潜力。压力。 W obszarze interfejsu mózg-komputer (BCI) kluczową przeszkodą jest skuteczna klasyfikacja sygnałów obrazowania motorycznego (MI). Opracowano liczne techniki klasyfikacji MI na podstawie sygnału elektroencefalogramu (EEG)。 Proponowany 系统支持脑电图 (EEG) 和提升小波变换 (LWT) 的变换。 Pamięć długoterminowa 长短期记忆 (LSTM) 是一个简单的学习方法,可以帮助您快速记忆。 Wydajność tej 方法是在 PhysioNet 和 bazie danych PhysioNet 中开玩笑的大洋洲,并在 celu rozróżnienia ruchu obrazowania prawej 和 lewej ręki 中使用。策略 ta zapewnia 100% dokładność w 19 z 72 rodzin falek LWT。该组合包括脑电图分析和 BCI 分析,可提供潜在的潜力。 ( Ekstrakcja cech oparta na entropii do klasyfikacji sygnału EEG przy użyciu transacji falkowej Lifting Wavelet ) 关键词:脑机接口、EEG、提升小波变换、LSTM。功能:计算机交互、脑电图、提升小波变换、LSTM。简介 运动想象 (MI) 代表了实现脑机接口 (BCI) 的一种方法。通常,它使用脑电图 (EEG) 来捕捉大脑活动,这是一种非侵入式且易于应用的方法。建议利用支持向量机 (SVM) 来生成非线性决策边界。此外,还定义了特定的核函数来处理数据集缺乏线性可分性的情况 [1]。研究人员在各种应用中对基于运动想象的脑机接口 EEG 信号分类进行了大量研究 [2-7]。在 BCI 的背景下,公共空间模式 (CSP) 是经常使用的特征之一。Selim 等人 [8] 提出了一种结合吸引子元基因算法和 Bat 优化算法的混合方法。这种混合方法用于选择 CSP 的最优特征并同时增强 SVM 的参数。其他研究则探索了使用 CSP 滤波器来推导新的时间序列。作者 [9] 采用了带通滤波器 (BPF) 和独立成分分析 (ICA) 等预处理技术来消除噪音。在区分左拳和右拳动作时,显式和隐式 MI 方法的准确率分别达到了 81±8% 和 83±3%。此外,各种研究还提出了结合不同方法以提高整体性能。在 [10] 中,设计了一种用于二元类 MI 分类的融合程序。它采用互相关技术提取特征,并利用最小二乘 SVM (LS-SVM) 进行分类。通过 10CV 方法进行性能评估,并将结果与八种替代方法进行比较,结果显示显著提高了 7.4%。提取特征和执行分类的另一种重要方法是使用卷积神经网络 (CNN) [11]。通过将 LSTM 网络与空间 CNN 集成,可以增强 BCI 的性能。随后,获得一个特征向量获得了一个特征向量获得了一个特征向量