基因组序列的可用性的增加,突显了我们单个参考基因组以表示物种内部多样性的局限性。pangenomes,涵盖了来自多个基因组的基因组信息,因此对二种情况的多样性进行了更稳定的代表。然而,图形形式的pangenomes通常缺乏注释信息,这限制了其对正向分析的效用。我们在这里介绍Grannot,该工具是通过将现有注释从源基因组投射到图表,然后随后转移到其他嵌入式基因组的工具,该工具专为使用此类图的效率和可靠的注释传输。Grannot针对的是大米,Human和E. coli的Pangenome图和线性基因组的最新工具进行了基准测试。结果表明,Grannot在准确性或速度方面是共识,保守和快速,超过基于对准的方法,或两者兼而有之。它提供了提供信息的输出,例如基因的存在 - 缺乏矩阵,以及源和靶基因组之间传递特征的比对,有助于研究杂物变化和进化。grannot的鲁棒性和不同物种的可复制性使其成为增强pangenome分析的宝贵工具。Grannot可在https://forge.fr/diade/dynadiv/grannot的GNU GPLV3许可下获得。
© 作者 2023。开放存取 本文根据知识共享署名 4.0 国际许可进行授权,允许以任何媒体或格式使用、共享、改编、分发和复制,只要您给予原作者和来源适当的信任,提供知识共享许可的链接,并指明是否做了更改。 本文中的图片或其他第三方资料包含在文章的知识共享许可中,除非资料的致谢中另有说明。 如果资料未包含在文章的知识共享许可中,且您的预期用途不被法定规定允许或超出允许用途,则需要直接从版权所有者处获得许可。 要查看此许可证的副本,请访问 http://creativecommons.org/licenses/by/4.0/ 。知识共享公共领域贡献豁免(http://creativeco mmons.org/publicdomain/zero/1.0/)适用于本文中提供的数据,除非数据来源中另有说明。
我们研究了1C进化枝中植物疫霉及其近亲的进化史。我们使用了来自1C进化枝中69个植物菌属分离株的整个基因组序列数据,并进行了一系列基因组分析,包括核苷酸介入性评估,最大似然树,网络评估,最新共同祖先和迁移分析的时间。我们始终确定了两种墨西哥植物疫霉菌的明显且后来的分歧,第1页。mirabilis和p。ipomoeae,来自p。Infestans和其他1C进化枝种。phytophthora Infestans与来自南美的其他1C进化枝种类表现出较新的分歧。Andina和p。 betacei。 在1C进化枝中的形成和p的演变。 Infestans发生在安第斯山脉中。 p。 Andina – p。 betacei – p。 Infestans形成了一个物种复合物,具有模糊的物种边界,物种之间的杂交以及与共同血统的短时间。 更重要的是,现代墨西哥和南美p之间的区别。 Infestans证明较少离散,表明随着时间的推移,人群之间的基因流动。 混合分析表明,这些人群之间存在复杂的关系,暗示了这些区域之间的潜在基因流动。 历史p。 从1845 - 1889年收集的 Infestans是第一个与所有其他p分歧的人。 Infestans人群。 现代南美人口下一步,墨西哥人口以后的血统。 Infestans。Andina和p。betacei。在1C进化枝中的形成和p的演变。Infestans发生在安第斯山脉中。p。Andina – p。 betacei – p。 Infestans形成了一个物种复合物,具有模糊的物种边界,物种之间的杂交以及与共同血统的短时间。 更重要的是,现代墨西哥和南美p之间的区别。 Infestans证明较少离散,表明随着时间的推移,人群之间的基因流动。 混合分析表明,这些人群之间存在复杂的关系,暗示了这些区域之间的潜在基因流动。 历史p。 从1845 - 1889年收集的 Infestans是第一个与所有其他p分歧的人。 Infestans人群。 现代南美人口下一步,墨西哥人口以后的血统。 Infestans。Andina – p。betacei – p。Infestans形成了一个物种复合物,具有模糊的物种边界,物种之间的杂交以及与共同血统的短时间。更重要的是,现代墨西哥和南美p之间的区别。Infestans证明较少离散,表明随着时间的推移,人群之间的基因流动。混合分析表明,这些人群之间存在复杂的关系,暗示了这些区域之间的潜在基因流动。历史p。Infestans是第一个与所有其他p分歧的人。Infestans人群。现代南美人口下一步,墨西哥人口以后的血统。Infestans。两个人群均来自历史p。基于p的发散时间。来自其最亲密的亲戚的Infestans,p。Andina和p。 Betacei在安第斯山脉地区,我们认为安第斯山脉是p的原产地。 Infestans,现代全球化有助于p之间的混合。 今天来自墨西哥,安第斯山脉和欧洲的人口。Andina和p。Betacei在安第斯山脉地区,我们认为安第斯山脉是p的原产地。 Infestans,现代全球化有助于p之间的混合。 今天来自墨西哥,安第斯山脉和欧洲的人口。Betacei在安第斯山脉地区,我们认为安第斯山脉是p的原产地。Infestans,现代全球化有助于p之间的混合。今天来自墨西哥,安第斯山脉和欧洲的人口。今天来自墨西哥,安第斯山脉和欧洲的人口。
将基因组对准共同坐标是pangenome分析和构建的核心,但在计算上也很昂贵。多序列最大唯一匹配(多-MUMS)是用于核心基因组比对的指南,有助于构架和解决多重比对问题。我们介绍了Mumemto,该工具可在大型pangenomes中使用多个粉刺和其他匹配类型。mumemto al-lows用于可视化同义,揭示了异常的组件和脚手架,以及高光pangenome保守和结构变化。Mumemto在25.7小时内使用320个人类基因组组件(960GB)计算多个Mums,并在几分钟内使用800 GB的记忆和数百多个真菌基因组组件计算。mumemto在C ++和Python中实现,并在https:// github上可用。com/vikshiv/mumemto。
1。意大利布雷西亚布雷西亚大学分子与转化医学系2。 国家心脏和肺研究所,伦敦帝国学院,英国伦敦3. Velsera Inc,美国马萨诸塞州查尔斯敦4。 皇家布隆普顿和哈雷菲尔德医院,盖伊和圣托马斯的NHS基金会信托基金会,英国5。 MRC医学科学实验室,伦敦帝国学院,伦敦,英国6。 阿斯万心脏中心,阿斯万,埃及7。 Meyer儿童医院,意大利佛罗伦萨8。 生物学和医学遗传学系,捷克共和国布拉格的查尔斯大学和摩托大学医院第二夫人士。 捷克共和国布拉格查尔斯大学和摩托大学医院第二学院心脏病学系10. 意大利佛罗伦萨大学实验与临床医学系11. 遗传学单位,IRCCS ISTITUTO CENTRO SAN GIOVANNI DI DIO DIO FATEBENEFRATELLI,意大利布雷西亚12. SOD Diagnostica Genetica,Azienda Ospedaliero Universitaria Careggi,佛罗伦萨,意大利佛罗伦萨13。 七桥基因组学公司,美国马萨诸塞州查尔斯敦,美国14。 Bristol Myers Squibb,美国马萨诸塞州剑桥市15。 心血管和基因组学研究所,伦敦伦敦市圣乔治大学,英国16。 阿姆斯特丹大学阿姆斯特丹UMC临床和实验心脏病学系,意大利布雷西亚布雷西亚大学分子与转化医学系2。国家心脏和肺研究所,伦敦帝国学院,英国伦敦3. Velsera Inc,美国马萨诸塞州查尔斯敦4。 皇家布隆普顿和哈雷菲尔德医院,盖伊和圣托马斯的NHS基金会信托基金会,英国5。 MRC医学科学实验室,伦敦帝国学院,伦敦,英国6。 阿斯万心脏中心,阿斯万,埃及7。 Meyer儿童医院,意大利佛罗伦萨8。 生物学和医学遗传学系,捷克共和国布拉格的查尔斯大学和摩托大学医院第二夫人士。 捷克共和国布拉格查尔斯大学和摩托大学医院第二学院心脏病学系10. 意大利佛罗伦萨大学实验与临床医学系11. 遗传学单位,IRCCS ISTITUTO CENTRO SAN GIOVANNI DI DIO DIO FATEBENEFRATELLI,意大利布雷西亚12. SOD Diagnostica Genetica,Azienda Ospedaliero Universitaria Careggi,佛罗伦萨,意大利佛罗伦萨13。 七桥基因组学公司,美国马萨诸塞州查尔斯敦,美国14。 Bristol Myers Squibb,美国马萨诸塞州剑桥市15。 心血管和基因组学研究所,伦敦伦敦市圣乔治大学,英国16。 阿姆斯特丹大学阿姆斯特丹UMC临床和实验心脏病学系,国家心脏和肺研究所,伦敦帝国学院,英国伦敦3.Velsera Inc,美国马萨诸塞州查尔斯敦4。 皇家布隆普顿和哈雷菲尔德医院,盖伊和圣托马斯的NHS基金会信托基金会,英国5。 MRC医学科学实验室,伦敦帝国学院,伦敦,英国6。 阿斯万心脏中心,阿斯万,埃及7。 Meyer儿童医院,意大利佛罗伦萨8。 生物学和医学遗传学系,捷克共和国布拉格的查尔斯大学和摩托大学医院第二夫人士。 捷克共和国布拉格查尔斯大学和摩托大学医院第二学院心脏病学系10. 意大利佛罗伦萨大学实验与临床医学系11. 遗传学单位,IRCCS ISTITUTO CENTRO SAN GIOVANNI DI DIO DIO FATEBENEFRATELLI,意大利布雷西亚12. SOD Diagnostica Genetica,Azienda Ospedaliero Universitaria Careggi,佛罗伦萨,意大利佛罗伦萨13。 七桥基因组学公司,美国马萨诸塞州查尔斯敦,美国14。 Bristol Myers Squibb,美国马萨诸塞州剑桥市15。 心血管和基因组学研究所,伦敦伦敦市圣乔治大学,英国16。 阿姆斯特丹大学阿姆斯特丹UMC临床和实验心脏病学系,Velsera Inc,美国马萨诸塞州查尔斯敦4。皇家布隆普顿和哈雷菲尔德医院,盖伊和圣托马斯的NHS基金会信托基金会,英国5。MRC医学科学实验室,伦敦帝国学院,伦敦,英国6。阿斯万心脏中心,阿斯万,埃及7。Meyer儿童医院,意大利佛罗伦萨8。生物学和医学遗传学系,捷克共和国布拉格的查尔斯大学和摩托大学医院第二夫人士。捷克共和国布拉格查尔斯大学和摩托大学医院第二学院心脏病学系10.意大利佛罗伦萨大学实验与临床医学系11.遗传学单位,IRCCS ISTITUTO CENTRO SAN GIOVANNI DI DIO DIO FATEBENEFRATELLI,意大利布雷西亚12.SOD Diagnostica Genetica,Azienda Ospedaliero Universitaria Careggi,佛罗伦萨,意大利佛罗伦萨13。七桥基因组学公司,美国马萨诸塞州查尔斯敦,美国14。Bristol Myers Squibb,美国马萨诸塞州剑桥市15。心血管和基因组学研究所,伦敦伦敦市圣乔治大学,英国16。阿姆斯特丹大学阿姆斯特丹UMC临床和实验心脏病学系,
Murukarthck Jayakodi 1,31,34 , Qiongxian Luke 2,3,34 , M. Timothy Rabanus-Wallace 1,34 , Micha Bayer 4 , Thomas Lux 5 , Benjamin Jaegle 6 , Wubishet Bekele 9,32 , Brett Chavang 10 , Boyke jørgensen 2 , Jia-wu Febig 1 , Anne Fiebig 1 , Hedrun Gundlach 5 , Georg Ha Berer 5 , Mats Hansson 13 , Axel HimMelbach 1 , iris Hoffe 1 , Robert 1 , Haifei Hu 12,14 , Sachiko Isobe 15 , Sandic M. Kale 2,33 6 , Manuela KNAAFT 1 , Simon G. Krattinger 17 , Jochen Kumlehn 1 , Chengdao Li 12,18,19 , Marone 1 , Andreas Maurer 20 , Klaus F. X. Mayer 1 , 22 , Emiko Murozuka 20 , Pierre A. Pierre A. 24 ro sato 15,27 , danta schüler 1 , Thomas Schmutzer , Uwe Scholz 1 , Miriam Schreiber 4 n 2 , Josquin F. TIBBTS 16 , Martin Toft Simmelsgard Nielsen 2 , Cynthia Voss 2 , Penghao Wang 12 , Robbie Waught 12 n 2 , Runxuan Zhang 4 , Xiao-Qi Zhang 12 , Thomas Wicker 6 ✉ , Christophy Dockter 2 ✉ , Martin Mascher 1,30 ✉ & Nils Stein 1,20 ✉
。cc-by-nc-nd 4.0国际许可证未通过同行评审获得证明)是作者/资助者,他已授予Biorxiv授予Biorxiv的许可,以永久显示预印本。它是此预印本的版权持有人(该版本发布于2024年4月1日。; https://doi.org/10.1101/2024.03.27.583983 doi:biorxiv Preprint
。CC-BY 4.0国际许可证。是根据作者/资助者提供的预印本(未经同行评审认证)提供的,他已授予Biorxiv的许可证,以在2024年2月19日发布的此版本中在版权所有者中显示预印本。 https://doi.org/10.1101/2022.11.15.516472 doi:Biorxiv Preprint
