由于中风后上肢瘫痪的恢复具有挑战性,补偿方法一直是上肢康复的主要重点。然而,基础和临床研究表明大脑的可塑性变化潜力远超乎我们的想象,功能恢复方法已变得越来越普遍。在这些干预措施中,最近发布的中风指南推荐使用强制性运动疗法、特定任务训练、机器人疗法、神经肌肉电刺激 (NMES)、心理练习、镜像疗法和双臂训练。但对于严重的上肢瘫痪,尚未建立有效的治疗方法。在此背景下,人们对将脑机接口 (BMI) 技术应用于上肢康复的兴趣日益浓厚。越来越多的随机对照试验证明了 BMI 神经康复的有效性,一些荟萃分析显示 BMI 疗法具有中等到较大的效果。亚组分析表明,在使用运动尝试而不是运动意象作为 BMI 训练触发任务,并使用 NMES 作为外部设备而非使用其他设备时,亚急性组的干预效果高于慢性组。庆应义塾 BMI 团队开发了一种基于脑电图的神经康复系统,并发表了临床和基础研究,证明其有效性和神经生理机制。为了更广泛地应用,需要明确 BMI 治疗在上肢康复中的定位,将 BMI 商业化为一种易于使用且具有成本效益的医疗设备,并需要开发针对康复专业人员的培训系统。还需要实现选择性调节神经回路的技术突破。(DOI:10.2302/kjm.2022-0002-OA);Keio J Med ** (*) : **–**, mm yy)
在本文中,我们为一名患者展示了对坟墓疾病的不寻常且可能表现出来的患者。通常以速度性心脏,疲劳,体重减轻和温度不耐受为特征,坟墓的疾病是甲状腺功能亢进症的最常见原因,在某些情况下,可能体现在急诊毒性的性毒性瘫痪(TPP)的危及生命中。我们报告了患者首次发病的患者的案例研究,他仅出现了TPP而没有任何其他持续甲状腺毒性症状的症状。补充,他经历了心动过缓和右捆绑块(RBBB)的发作。钾更换后瘫痪,RBBB在开始抑制抑制剂后解决。本文介绍了患者的临床评估和治疗,概述了防止反弹性高钾血症的措施,并讨论了生物素干扰激素测定,肾上腺不足以及甲状腺毒性导致的心脏阻滞的问题。还提供了TPP的文献和病理生理学的综述。
2023年6月14日,FDA发布了一份标题为“设备软件功能的预售内容的内容”的指南。 1该最终指南取代了2005年5月11日发布的医疗设备中包含的软件上市预报内容的指南。2023年6月14日发布的最终指南提供了有关推荐的文档发起人应包括的信息,以便在premarket提交中包括FDA评估设备软件功能的安全性和有效性。特别是,最终指南包括帮助确定设备文档级别(以前称为关注级别)的信息。文档级别的目的是帮助确定支持包括设备软件功能的前市场提交的最小信息。
抽象的背景植入式脑 - 计算机界面(BCI)(BCIS)充当运动神经假体,有可能恢复自愿运动冲动以控制数字设备并改善由于脑,脊髓,周围神经或肌肉功能障碍而导致大脑,脊髓,周围神经或肌肉功能障碍的严重瘫痪的患者的功能独立性。但是,迄今为止的报告的临床翻译有限。方法与两名患有肌萎缩性侧硬化症(ALS)的参与者在单臂,开放标签,前瞻性,早期可行性研究中接受了植入物。使用微创神经干预程序,将新型的血管内架BCI植入了与原发性运动皮层相邻的上矢状窦中。参与者进行了机器学习辅助训练,以使用与尝试的运动相关的无线传输电视学信号,以控制多个鼠标单击的动作,包括变焦和左键单击。与光标导航相结合使用,参与者实现了Windows 10操作系统控制,以进行日常生活(IADL)任务的器乐活动。结果从第86天开始为参与者1开始,而参与者的第71天开始开始使用。参与者1以13.81(13.44,10.96-16.09)的速度(13.44,10.96-16.09)获得了92.63%(100.00%,87.50%–100.00%)的打字任务精确率(100.00%,87.50% - 100.00%)(试验平均值(中位数,Q1 – Q3)),并具有预测性文本有限的每分钟(CCPM)。参与者2在20.10(17.73,17.73,12.27–26.50)CCPM时,平均点击选择精度为93.18%(100.00%,88.19%–100.00%)。在两位参与者中都独立证明了IADL任务,包括文本消息,在线购物和管理财务。结论,我们使用血管内支架 - 支架 - 电极阵列来描述微创,完全植入,无线,无线运动神经假体的最初体验
摘要背景可植入的脑机接口 (BCI) 可充当运动神经假体,有可能恢复自主运动冲动以控制数字设备并提高因大脑、脊髓、周围神经或肌肉功能障碍导致严重瘫痪患者的功能独立性。然而,迄今为止的报告在临床上的转化有限。方法两名患有肌萎缩侧索硬化症 (ALS) 的参与者在一项单组、开放标签、前瞻性、早期可行性研究中接受了植入。使用微创神经介入手术,将新型血管内 Stentrode BCI 植入毗邻初级运动皮层的上矢状窦。参与者接受机器学习辅助训练,使用与尝试运动相关的无线传输的皮层脑电图信号来控制多个鼠标单击操作,包括缩放和左键单击。结合使用眼动仪进行光标导航,参与者实现了 Windows 10 操作系统控制以执行工具性日常生活活动 (IADL) 任务。结果 参与者 1 从第 86 天开始在家无人监督使用,参与者 2 从第 71 天开始使用。参与者 1 在禁用预测文本的情况下,打字任务平均点击选择准确率为 92.63%(100.00%,87.50%–100.00%)(试验平均值(中位数,Q1–Q3)),每分钟正确字符数 (CCPM) 为 13.81(13.44,10.96–16.09)。参与者 2 在每分钟正确字符数 (CCPM) 为 20.10(17.73,12.27–26.50)时,平均点击选择准确率为 93.18%(100.00%,88.19%–100.00%)。两名参与者都完成了 IADL 任务,包括发短信、网上购物和独立管理财务。结论 我们描述了一种微创、完全植入、无线、可移动的运动神经假体的首次人体体验,该假体使用血管内支架电极阵列从运动皮层传输脑电图信号,用于多个指令
吞咽困难、反流、骨盆肢体本体感觉丧失和进行性截瘫。2,5,6 ILP 主要影响年龄较大(> 9 岁)的大型至巨型犬。6 尽管许多品种都有 ILP 的记录,但大约 70% 的病例见于拉布拉多猎犬。2,6,7 ILP 与人类的遗传性周围神经病(包括 2 型腓骨肌萎缩症 (CMT) 和远端遗传性运动神经病)有许多相同的病理生理、组织病理学和临床特征,使其成为遗传性周围神经病有希望的自发性大型动物疾病模型候选者。神经丝轻链 (NfL) 浓度可作为轴突变性的标志,在人类中是多种神经退行性疾病的潜在生物标志物。 8 NfL 是 4 个亚基之一,另外 3 个是神经丝中链、神经丝重链和 α-internexin,它们组成了形成神经元细胞骨架的杂聚物神经丝蛋白。9 所有 4 个亚基共同作用,帮助轴突直径的生长并充当轴突支架。9 已证明 NfL 稳定、可溶,并且在脑脊液和血浆中含量丰富。9,10 虽然在人体正常衰老过程中脑脊液和血液中的 NfL 会增加,但在几种人类神经退行性疾病中也发现了更高水平的 NfL。11 目前,NfL 用于辅助诊断、告知预后和监测各种人类神经退行性疾病的治疗反应。11–13 使用 NfL 跟踪疾病进展的潜力将允许进行更强有力的临床试验和治疗反应监测。 14 在狗中,可以有效测量血浆神经丝轻链 (pNfL),并且已证明在患有影响中枢神经系统疾病的狗中会增加。15,16 目前尚不清楚 pNfL 是否对狗的任何周围神经病变具有临床实用性。本研究的目的是调查与老年对照群体相比,受 ILP 影响的拉布拉多猎犬的 pNfL 浓度是否发生了改变。第二个目的是调查研究人群中 pNfL、年龄、身高、体重和身体质量指数 (BMI) 之间的关系。我们的假设是,与由中型到大型犬组成的年龄匹配的对照群体相比,受 ILP 影响的拉布拉多猎犬的 pNfL 浓度会显著更高。我们的第二个假设是,在由老年犬组成的研究群体中,年龄、身高、体重或 BMI 与 pNfL 浓度之间没有相关性。
2. Heather Venable,“同侪冲突中的瘫痪?百年军事思想中的物质与精神”,《War on the Rocks》,2020 年 12 月 1 日,https://warontherocks.com/2020/12/paralysis-in-peer-conflict-the-material-versus-the-mental-in-100-years-of-military-thinking/;Michael Kofman,“糟糕的恋情:美国作战概念需要抛弃与认知瘫痪的恋情,与消耗战和平相处”,西点军校现代战争研究所,2021 年 3 月 31 日,https://mwi.usma.edu/a-bad-romance-us-operational-concepts-need-to-ditch-their-love-affair-with-cognitive-paralysis-and-make-peace-with-attrition/。 3. 关于战略瘫痪,请参阅 David S. Fadok 的《约翰·博伊德和约翰·沃登:空中力量寻求战略瘫痪》(论文,空军大学,1995 年)。4. 美国空军,空军部《联合全域作战 (JADO) 中的作用》,空军条令出版物 (AFDP) 3-99(麦斯威尔空军基地,阿拉巴马州:柯蒂斯·勒梅条令发展与教育中心,2020 年),https://www.doctrine.af.mil/Portals/61/documents/AFDP_3-99/AFDP%203-99
The new spinoff company at IMBB-FORTH and University of Crete, ReNeuroCell Therapeutics, which is actively involved in the development of new cell therapies against spinal cord injuries and in the reversal of paralysis by implementing 3D neuro-implants of advances biomaterials hosted in human neural stem cells, received an award at the Start Smart Forum of spinoff companies of the MIT Innovation Forum.该公司通过实施在人类神经干细胞中携带的生物材料的3D神经植物来积极参与针对脊髓损伤的新细胞疗法以及瘫痪的逆转。该公司由IMBB-Forth的研究人员,Crete University的研究人员兼Gravanis,D。Tzeranis和G. Charalampopoulos创立。
