-------------------------------------- 背景 管理、经济与科学学院 (FGES) 正在招聘一名计算机科学讲师研究员,签订一份永久合同,作为尽快填补职位的一部分。 FGES 提供 10 个执照、13 个硕士和专业执照,涉及科学、管理、会计和经济学领域,以及双课程的 CUPGE 课程。该校每年招收 2,400 名学生。学生支持(积极教学、学生生活、个人发展和专业化)和国际化是大学更广泛使命的一部分,即培养能够适应、创新并成为积极和负责任的公民的专业人士。通过教学、研究和学习传播科学文化和向社会经济界开放也是我们的优先任务。 FGES 研究部门致力于广义的智慧和可持续城市,包括四个主要轴线:能源效率挑战、组织和财务外标准、数字化转型以及可持续城市和生物多样性。它汇集了约三十名成员。里尔天主教大学是一所多学科大学,拥有 40,000 名学生,下设 5 个学院(法学、文学与人文科学、医学与助产、管理、经济学与科学、神学),20 个学院和研究所,包括医学院和准医学院、社会学院、高等管理学院,一个医院集团,以及近 50 个研究团队,共有 650 名教师研究员。
在记录中,锂电池由负电极(阳极),正电极(阴极)和电解质组成。这三个元素插入水密聚合物包膜或细胞中。阳极通常由石墨组成。阴极由Lithié过渡金属氧化物组成。主要遇到的电池是LFP(锂,铁,磷酸盐)电池或NMC(锂,镍,锰,钴)电池。电解质主要由氟化锂盐(通常是锂的六氟磷酸盐)和有机碳酸盐型溶剂组成。在热失控或火灾中,电池中存在的元素及其分解产物可以在发射的烟雾中,以颗粒或气体的形式找到。可用的研究[1至3],很少有人在这个主题上,表明烟雾的复杂组成取决于许多参数。将干预电池的组成,其大小,负载,炎症,气体是否不燃烧,其他元素的燃烧(塑料,电缆等)。在开放或封闭空间中的事件过程也应考虑在内。根据研究,以不同浓度发现的气体和颗粒主要包括在没有燃烧的情况下(释放无火烟),有机碳酸盐(碳酸盐
仅限交叉训练机:对于 EN 957-9 A 级精度测试,通过将阻力装置(发生器)和控制台连接到测功机来测量机械输入功率。扭矩测试数据以所有可用的速度和阻力水平设置进行记录。然后通过减速测试确定机械阻力,无需用户操作设备,以准确测量启动速度和踏板停止所需的时间。然后根据系统惯性、输入速度和停止设备所需的时间计算停止设备所需的扭矩,然后将其添加到测功机数据以获得系统总扭矩。然后使用测量的扭矩和速度来计算机械输入功率以及与显示功率的方差。在 10 级,55 rpm 的恒定速度下,显示的功率为 107 瓦,与测试设备上测得的输入功率相差 4.7%。在 12 级,80 rpm 的恒定速度下,显示的功率为 136 瓦,与测试设备上测得的输入功率相差 1.6%。
仅限交叉训练机:对于 EN 957-9 A 级精度测试,通过将阻力装置(发生器)和控制台连接到测功机来测量机械输入功率。扭矩测试数据以所有可用的速度和阻力水平设置进行记录。然后通过减速测试确定机械阻力,无需用户操作设备,以准确测量启动速度和踏板停止所需的时间。然后根据系统惯性、输入速度和停止设备所需的时间计算停止设备所需的扭矩,然后将其添加到测功机数据以获得系统总扭矩。然后使用测量的扭矩和速度来计算机械输入功率以及与显示功率的方差。在 10 级,55 rpm 的恒定速度下,显示的功率为 107 瓦,与测试设备上测得的输入功率相差 4.7%。在 12 级,80 rpm 的恒定速度下,显示的功率为 136 瓦,与测试设备上测得的输入功率相差 1.6%。
基础:在各种慢性疾病中,社会支持可以显着影响治疗,疾病管理和情绪健康的康复。 div>目的:分析感知到的社会支持与年轻人自我管理的有效性之间的关系。 div>方法:进行了描述性研究,在2023年2月至4月,在城市北部和市中心的两个糖尿病诊所进行了相关横向切割。。进行选择性抽样。 div>该研究包括对16至18岁的100名年轻糖尿病患者的评估。 div>用于数据收集的技术是调查。 div>社会支持问卷和糖尿病自我管理问卷被用来表征样本。 div>定量测试以作为医学指标进行葡萄糖基化血红蛋白测量。 div>通过非参数测试和使用SPSS 25.0统计软件包的方差分析对结果进行统计分析。 div>结果:对测试结果的分析并未揭示自我控制的患者之间的社会支持显着差异。 div>治疗结果不佳的患者的社会支持网络较少,但比具有良好糖尿病控制的患者更满意,此外,糖尿病发病率的持续时间中度且与支持网络和满意程度相关。 div>结论:尽管治疗结果不良的患者预计得到较少的支持,但结果表明,两组都得到了相同的支持,并且对他同样满意。 div>
目前欧洲卫星无线电导航系统项目“伽利略”的开发由一个向欧盟交通运输专员负责的组织领导,该组织称为“全球导航卫星系统监管局”(GSA),“全球导航卫星系统”是“全球导航卫星系统”的缩写。 2007 年 1 月,GSA 取代了欧盟委员会和欧洲航天局 (ESA) 之间的联合承诺,即伽利略联合承诺 (GJU)。位于巴黎天文台的 LNE-SYRTE 是由公司和欧洲国家计量研究所 (INM) 组成的财团 Fidelity 的成员,该财团自 2005 年 6 月以来一直与 GJU 签订合同,今天又与 GSA 签订合同,用于创建外部时间计量服务提供商的原型,称为伽利略时间服务提供商(GTSP)[1]。该联盟在第 2 章中进行了描述,GTSP 原型的作用在第 3 章中进行了描述。它必须在伽利略的在轨验证阶段(原计划于 2008 年初进行的在轨验证 (IOV))期间提供时间计量元素系统的参考时标、伽利略系统时间 (GST) 必须由直接属于伽利略的时钟在内部生成。另一方面,GTSP 必须提供以协调世界时 (UTC) 模 1 秒为基础的 GST 控制参数,因此相当于国际原子时 (TAI),以保持这两个较低尺度之间的差距。
诸如MOSFET,光电探测器,光伏细胞之类的设备的性能受到接口质量的强烈影响,尤其是介电和硅之间。已知通过高介电常数Diélectrics(High-k)对IF的钝化可以改善这些接口的电性能。在用于表征界面质量的方法中,第二次谐波(SHG)的产生是一种基于非线性光学器件的有希望的敏感和非破坏性技术。在偶极近似中,中心分析材料中的SHG响应(例如Si,Al 2 O 3,Sio 2等)为零。因此,SHG响应主要包含与界面相关的信息,其中对称性被打破。此外,在界面处的电场(E DC)存在下,信号得到加固。该现象称为efish(电场诱导的SHG)。由于电界面场与氧化物(Q OX)和/或界面状态(d IT)中的固定载荷相关联,因此SHG技术对这些电参数敏感。本论文的目的是校准SHG响应,以测量与电介质中固定载荷相关的电场。从SHG实验数据中提取电气信息需要考虑光学现象的影响(吸收,干扰等。),这得益于对所研究结构的第二个谐波的响应进行建模/模拟。我们的仿真程序基于我们为多层人士改编的文献的理论模型。实验是在Si(100)上的几层Al 2 O 3上进行的,在可变条件下沉积并且界面质量非常不同。互补的电气技术,例如Corona负载(COCOS)和容量张力测量(C-V)的表征,使得访问样品的电场并完成SHG结果以进行校准。实验和模拟证明了Si介电的单个校准的可能性还讨论了与多层(绝缘体上的硅)等多层表征相关的一些研究元素,特别是对各个接口处存在的层厚度或电场厚度的SHG响应的影响。
本文介绍了在多学科设计优化 (MDO) 背景下开发的设计和分析 (D&A) 平台中代表二次空气系统 (SAS) 使用的工具的集成。由于燃气轮机技术需要非常高的精度,因此在许多专业领域都需要细致的工作,工程师们面临着非增值任务,例如数据管理、软件之间的信息传输不畅以及繁琐的数据预处理和后处理产生的。上述元素大大减少了分析时间和最终产品的质量。这样的平台汇集了用于燃气轮机设计的软件,以实现其自动化。这些工具以批处理模式运行,并且该平台链接到数据管理系统,以保证提高流程效率。 SAS 可以冷却涡轮叶片等部件。它还有助于隔离和管理施加在球轴承上的负载。如果没有这样的系统,燃气轮机就无法达到今天的功率。已为 SAS 工程师设计并测试了一个工具。通过对工作流程进行仔细分析,建立了适合自动化的任务列表并确定了优先级。预处理是
从历史上看,通过挖掘航道、将其保持在既定水平以及清理水池、码头等,可以更容易地进入港口区域。我们努力开发越来越高效的挖泥机,以满足搬运数百万立方米泥沙的需求。目前可用的设备由专用机器组成,可满足疏浚区域的特定需求和沉积物的性质:或多或少压实的泥土、沙子等。从确定沉积物可能携带大量污染物和有毒物质的那一刻起,有关疏浚和倾倒对环境影响的新担忧就出现了。因此,对倾销危险性进行预测评估已成为管理者的必要之举。然而,事实证明,沉积物,特别是港口的沉积物,是复杂的、动态的、有生命的、不断变化的隔间,并且与水柱保持着恒定的关系。沉积物再加工造成的相关污染物的命运及其潜在影响涉及相互作用的现象,其中一些现象(例如生物利用度)仍然知之甚少。影响、社会和经济方面的科学不确定性是管理者在不断变化的监管环境中必须考虑的参数,以选择合适的技术并为许可证的发放奠定基础。在许多情况下,这些决定并不容易做出,并且会引发激烈的争论。这就是 Ifremer 主动实施多学科研究计划的原因,以解决物理、化学和生物影响。该项目得到了国土规划和环境部 Pnétox 和 Liteau 招标以及设备、运输和住房部 Géode 工作组的支持,其目标是提高我们的知识研究港口沉积物的影响和归宿,并将这些结果以实际形式传递给管理者。供管理者使用的方法指南应在该领域取得进展。这项工作是该计划的首批贡献之一。面向科学家和管理者,无意详尽无遗,而是为疏浚环境问题提供基础。事实上,在“与疏浚活动相关的环境问题国际研讨会”(南特,1989 年)十年后,似乎有必要更新对该领域知识的评估。
摘要 在本论文中,我们介绍了下一代神经质量模型的新颖扩展和应用。 Montbrió、Pazó 和 Roxin (MPR) 已证明,二次积分和放电 (QIF) 神经元集合的集体行为可以用平均膜电位和放电率来精确描述,从而将无限大的微观网络的问题维度降低为低维宏观描述。由于神经质量提供了平均膜电位的途径,因此它可以作为局部场电位和脑电图信号的指标。本论文的贡献之一是在 MPR 模型中实现短期突触可塑性(STP)。基于工作记忆 (WM) 的突触理论,我们在多群体设置中使用 QIF 网络及其精确的平均场边界重现了 WM 的机制。实验中观察到,神经质量模型在记忆加载和维持过程中表现出 β-γ 带的振荡,而我们在启发式模型中遇到空的 β-γ 带。此外,我们指出了这些功率带是如何由基频之间的共振形成的,并与记忆中保留的元素数量相关。我们还对大约五种元素的最大 WM 容量进行了分析估计。第二个贡献是应用多种群模型来检验癫痫发作传播的临床假设。我们使用从健康受试者和癫痫患者的扩散 MRI 扫描获得的结构连接组。我们描述了如何将类似癫痫发作的事件建模为从低活动状态到高活动状态的募集。外部输入可以触发此类事件并导致一系列招募,从而模仿危机的时空传播。数值结果表明,癫痫患者对延长招募事件比健康受试者更敏感。我们还发现,我们的模型中首先招募的大脑区域与招募的次级网络的手术前评估之间存在良好的一致性。作为第三个贡献,我们使用慢-快动力学研究了 STP 存在下的神经网络和质量。根据施加到群体的慢周期电流的幅度,集体行为可以处于亚阈值振荡状态,也可以处于爆发状态,即在准静态漂移和大幅度快速振荡之间交替。这两个区域之间有一个狭窄的参数间隔,就像鸭子爆炸一样。在这个区域,我们报告了跳跃式鸭翼,它接近通常排斥的不变集。对于中间时间尺度分离,爆发通过混合型环面鸭翼组织的尖峰添加机制以连续的方式出现,其轨迹接近排斥平衡和极限环家族。为了实现更强的时间尺度分离,连续过渡被跳跃式鸭翼阻挡。在神经团中观察到的机制也是导致网络爆发的原因。总而言之,本论文将下一代神经质量模型置于神经科学建模的更广泛背景中,并为未来的工作提供了新的视角。这包括考虑以下方法