分化的甲状腺癌(DTC)(1)包括乳头状甲状腺癌(PTC),卵泡甲状腺癌(FTC)及其变异亚型(2),是最常见的内分泌恶性肿瘤,并且最近几年的发病率迅速增加。DTC通常具有良好的预后,碘131治疗和甲状腺抑制剂已被证明对10年生存率的患者有益,范围为80%至95%(3,4)。然而,大约5%-20%的病例可能由于基因突变引起的肿瘤生物学变异,导致不同的亚型和预后不良,这可能与高度浸润性肿瘤的生物学特征有关(5)。因此,甲状腺结节的鉴别诊断仍然很明显。对比增强超声(CEU)可以实时评估组织的微循环灌注(6),提供准确可靠的数据,并且可以避免由个体差异引起的诊断错误(7)。由于甲状腺正常组织中的微容器的丰度,它显示出造影剂后的快速和均匀增强。然而,甲状腺结节具有不同的血管生成模式,并且CEUS上的表现可能不同(8)。先前的研究报道了甲状腺结节的CEUS特征,但是,大多数是基于结节内部(9-11),而CEUS上甲状腺结节的增强模式仍然没有足够的能力来诊断甲状腺癌(12)。到目前为止,只有一项研究重点介绍了结节周围区的CEU特征(13)。这项研究的目的是通过研究甲状腺结节的内部和外围区域的定性和定量参数来评估CEU在DTC的鉴别诊断中的价值。
非酒精性脂肪性肝病 (NAFLD) 是代谢综合征在肝脏的一种表现,其病理特征是肝脏脂肪异常大量积聚,不包括饮酒和病毒性肝炎等其他病因。在过去的几十年中,NAFLD 已迅速成为最常见的肝脏疾病,影响到世界约三分之一的人口,是肝脏相关疾病高发病率和高死亡率的主要原因,给患者带来了严重的健康问题和经济负担 ( 1 )。2 型糖尿病 (T2DM) 是一种以高血糖、高胰岛素血症和胰岛素抵抗 (IR) 为特征的代谢性疾病,影响着全球数亿人,NAFLD 与 T2DM 之间的关联已得到充分证实 ( 2 , 3 )。一项对501 022名个体进行中位随访期为5年的荟萃分析显示,NAFLD可导致罹患2型糖尿病的风险增加约2.2倍(4)。Kanwalet等的研究显示,合并2型糖尿病的NAFLD患者罹患肝细胞癌或肝硬化的风险是非糖尿病患者的2倍以上(5)。在临床诊断2型糖尿病之前,很大一部分患者存在空腹血糖或糖耐量受损,即所谓的糖尿病前期,而这种状态也被认为与NAFLD密切相关(6),有进展为2型糖尿病的潜力(7)。因此,NAFLD患者早期糖代谢管理在临床上尤为重要,但目前尚无合适指标能有效揭示NAFLD患者的糖代谢,研发一种便捷的预测异常糖代谢生物代谢物的指标已势在必行。脂质代谢异常是 NAFLD 与糖代谢异常之间的纽带,而 NAFLD 与脂质异常密切相关(8),表现为甘油三酯 (TG) 水平升高和高密度脂蛋白胆固醇 (HDL-C) 水平降低。此外,NAFLD 患者的总胆固醇 (TC) 代谢发生显著改变,表现为胆固醇合成增加和吸收减少(9),胆固醇过量积聚会导致胰腺 b 细胞
需要开发适应不断变化的生产情景的植物品种,特别是在气候变化的情况下,这要求作物满足日益复杂和多样化的需求,这对育种者来说是一个巨大的挑战。在此背景下,追求赋予所需作物特性和适应性的性状组合比以往任何时候都更加重要,因此有必要加强多标准或多性状育种(Moeinizade 等人,2020 年)。利用分布在基因组中的完整核苷酸多样性来预测数量性状的育种值(基因组预测,GP,Meuwissen 等人,2001 年)已证明其在育种计划中的有效性。事实证明,这种方法有助于提高遗传增益率并降低成本(Hickey 等人,2017 年)。然而,为了应对气候变化和更明确的环境目标种群(Chapman 等人,2000 年),对多环境(ME)育种的需求日益增长,这需要采用基因组预测方法来解释基因型和环境(GxE)之间相互作用的出现(Rincent 等人,2017 年)。先前的研究试图在基因组选择(GS)中解决 GxE。例如,Burgueño 等人(2012) 开发了多环境统计模型。然而,这些模型仅考虑线性和非因果环境效应,从而降低了预测准确性的可能增益,尤其是对于复杂的综合性状或与校准集有显着差异的环境(Rogers and Holland,2022)。Heslot 等人。另一方面,(2014 年)使用作物生长模型 (CGM) 来推导环境协变量。与标准 GS 模型相比,在 GS 框架内加入环境协变量可提高预测准确性并降低未观察环境中的预测变异性。整合作物模型以解决 GxE,如 Heslot 等人的研究所示。(2014) ,强调了这种方法在所述育种环境中的实用性。尽管如此,考虑大量协变量会显著增加问题的复杂性,使得建模变得极具挑战性(Larkin 等人,2019 年)。
参考[1] Hou,Saihui等。“通过重新平衡来逐步学习统一的分类器。”CVPR2019。[3] Liu,Yaoyao,Bernt Schiele和Qianru Sun。“用于课堂学习学习的自适应聚合网络。”CVPR 2021。[4]刘,Yaoyao,Bernt Schiele和Qianru Sun。“ RMM:用于课堂学习学习的增强记忆管理。”神经2021。[5] Rebuffi,Sylvestre-Alvise等。“ icarl:增量分类器和表示学习。”CVPR2017。[6] Li,Zhizhong和Derek Hoiem。“学习而不会忘记。”TPAMI2017。
锂离子电池(LIB)已成为绿色经济过渡的重要技术,因为它们被广泛用于便携式电子,电动汽车和可再生能源系统中。固体电解质中相(SEI)是LIB的正确操作,性能和安全性的关键组成部分。SEI源于阳极 - 电解质界面的最初热量稳定性,所得的电解质还原产物通过形成电化学缓冲窗口稳定界面。本文旨在使第一个(但很重要)步骤,以增强广泛使用的反应力场(RAEXFF)的参数化,以确保对LIBS中SEI成分的精确分子动力学(MD)模拟。为此,我们专注于氟化锂(LIF),这是一种非常感兴趣的无机盐,这是由于其在钝化层中的有益特性。该协议在很大程度上依赖于各种python库,该库旨在与原子模拟一起使用,允许对所有重新聚体步骤进行强有力的自动化。所提出的配置集和所得数据集,允许新的Reaxff恢复无机盐的固体性质,并改善MD模拟中的质量传输属性预测。优化的REAXFF通过准确调节固体晶格中锂的扩散性,从而超过了先前可用的力场,从而在室温下预测的两阶提高了两阶数字。然而,我们对模拟的全面研究表明,Reaxff对训练集的敏感性很强,从而使其能够插入势能表面具有挑战性。因此,可以通过利用提出的互动重新聚体化协议来构建数据集,从而有效地利用RAEXFF的当前表述来建模特定且定义明确的现象。总体而言,这项工作代表了精确的反应性MD模拟迈克斯的重要第一步,阐明了Reaxff力场参数化的挑战和局限性。所证明的局限性强调了通过我们的交互式重新聚集协议开发更通用和先进的力场来提高仿真的潜力,从而实现了将来更准确,更全面的MD模拟。
Thierry Tran,FrançoisVerdier,Antoine Martin,HervéAlexandre,Cosette Grandvalet等。食品微生物学,2022,105,pp.104024。10.1016/j.fm.2022.104024。hal-03648386
伯基特淋巴瘤(BL),弥漫性大B细胞淋巴瘤(DLBCL)和原发性纵隔B细胞淋巴瘤(PMBCL)是儿童和年轻人的常见肿瘤(1)。尽管化学疗法可以显着提高生存率,而无事件的生存率为5年,但对于那些对前线化学疗法复发或反应不佳的患者的预后较差[总生存率(OS)率≤25%](2)。高剂量化疗可能会诱导延迟作用,包括继发性恶性肿瘤,慢性健康状况和不育(3,4)。作为一种新型的免疫治疗,嵌合抗原受体(CAR)T细胞治疗在许多类型的恶性肿瘤中取得了显着的效果,尤其是在复发或难治性的大B细胞淋巴瘤(LBCL)中,并且治疗效应可以持续使用(5-7)。但是,大多数患者确实会经历复发(8,9)。细胞因子释放综合征(CRS)和免疫效应物细胞相关的神经毒性综合征(ICAN)是常见的与免疫相关的不良事件,必须密切监测,因为它们可能是致命的(10)。因此,重要的是要鉴定预后较差的患者,并且在服用T细胞治疗之前有严重不良反应的风险。作为形态和功能成像的组合,
图像切解分析检测数字图像中隐藏的数据,对于增强数字安全性至关重要。传统的切解方法通常依赖于大型预先标记的图像数据集,这些数据集很困难且昂贵。为了解决这个问题,本文介绍了一种创新的方法,该方法结合了积极的学习和非政策深度强化学习(DRL),以使用最小标记的数据来改善图像ste缩。主动学习允许模型智能选择应注释哪些未标记的图像,从而减少有效培训所需的标记数据量。传统的主动学习策略通常使用限制灵活性且不能很好地适应动态环境的静态选择方法。为了克服这一点,我们的方法结合了用于战略数据选择的非政策DRL。DRL中的非政策可以提高样本效率,并显着提高学习成果。我们还使用差分进化(DE)算法来微调模型的超参数,从而降低了其对不同设置的敏感性并确保更稳定的结果。我们对广泛的BossBase 1.01和BOWS-2数据集进行了测试,证明了该方法区分未更改和隐形图像的强大能力,在BossBase 1.01和BOSS-2数据集对BossBase 1.01和91.834%的平均F量表达到93.152%。总而言之,这项研究通过采用先进的图像切解分析来检测隐藏数据,从而增强了数字安全性,从而通过最小的标记数据显着提高了检测准确性。
A:意大利博尔扎诺的高山环境研究所Eurac Research。b:意大利农业,环境和食品科学学院博尔扎诺大学免费大学。C:意大利博尔扎诺的气候变化与转型中心EURAC研究。D:芬兰赫尔辛基自然资源研究所(Luke)。E:芬兰森林科学学院东部芬兰大学 *通讯作者:电子邮件:marco.mina@eurac.edu摘要关键字校准,干扰建模,欧洲阿尔卑斯山,森林景观模型,森林模型,模型初始化引用引用Mina M,Mina M,Marzini S,Marzini S,Crespi A,Crespi A,Crespi A,Crespi A,Albrich a,Albrich K. 2025252525252525252525252525252525252525. 建立支持森林管理的虚拟森林景观:参数化的挑战。 。 monit。 2(1):49-96。建立支持森林管理的虚拟森林景观:参数化的挑战。。monit。2(1):49-96。
在临床上,α-丘陵症分为轻度,中间和严重的形式,分为贫血严重程度。具体来说,严重的α-丘脑贫血在纯合个体中表现出来,其特征是α球蛋白不足。存在两个α0等位基因,导致完整的四基因缺陷(α - / - - ),在被称为血红蛋白(HB)的子宫疾病中构成致命的杀伤力。这是由于缺乏α链缺乏的血红蛋白而引起的,以充分运输氧气。因此,这种严重的变体通常在胎儿发育过程中吞噬,通常在妊娠结束时在宫内死亡或由于严重贫血的复杂作用和导致的缺氧而导致妊娠结束或产后死亡。这项研究努力通过移植具有双α等位基因敲除的胚胎肝细胞来建立α-thal症小鼠模型,随后侧重于全面表征其血液学参数和相关的表型指标。为了生成α-珠链链缺陷的小鼠模型,我们将胎儿肝细胞移植(胚胎天第13.5天收获,从纯合C57BL/6J-CD45.2-HBA-DKO小鼠中)中,将其转移到C57BL/6野生型受体中,并具有800 CGY Iradadiation。随后进行多个血液常规指标,血液涂片评估和脾脏重量测量值以表征模型。最初,模型小鼠相对于对照表现出升高的白细胞和淋巴细胞计数,尽管这种反应随着时间的推移而减弱,但可能表明可能是可能的免疫反应。疾病的特征,这些小鼠表现出显着降低的平均肌肉血红蛋白含量和浓度,以及HBH夹杂物数量增加和脾脏重量。此外,在模型小鼠中,红细胞计数,血细胞计数,红细胞分布宽度(变异的发音和红细胞分布宽度)的范围都显着增加。值得注意的是,模型小鼠的平均血小板体积,血小板分布宽度和血小板大细胞比例的值显着升高,反映了异常的血小板特征。同时,嗜碱性粒细胞百分比的时间依赖性增加,血小板计数,血小板批判和血小板较大的细胞计数降低,集体暗示逐渐严重的贫血状态。此外,从低水平到高水平的网状细胞百分比和绝对网状细胞计数的进展进一步证实了溶血的不断升级趋势。模型小鼠的体重也大幅下降,强调了疾病进展对健康的深远影响。