在这项研究中,使用了极端梯度提升(XGBoost)和光梯度提升(LightGBM)al-gorithms用间接太阳能干燥机的香蕉切片的干燥特性进行模型。建立了自变量(温度,水分,产品类型,水流量和产品质量)与因变量(能源消耗和降低)之间的关系。用于耗能,XGBoost在训练过程中以0.9957的r 2为0.9957,在测试过程中表现出优异的表现,在训练期间的最小MSE为0.0034,在训练期间为0.0008,在测试阶段表明高预测性获得率和低错误率。相反,LGBM显示较低的R 2值(0.9061训练,0.8809测试)和较高的MSE在训练过程中的MSE为0.0747,在测试过程中0.0337显示了0.0337,反映了较差的表现。同样,对于收缩预测,XGBOOST优于LGBM,较高的R 2(0.9887训练,0.9975测试)和较低的MSE(0.2527培训,0.4878测试)证明了LGBM。统计数据表明,XGBoost定期胜过LightGBM。基于游戏理论的Shapley功能表明,温度和产品类型是能源消耗模型的最具影响力的特征。这些发现说明了XGBoost和LightGBM模型在食品干燥操作中的实际适用性,以优化干燥调节,提高产品质量并降低能耗。
在伊拉克,DM造成7279人死亡或总死亡人数的4.24%。4 T2DM代表了世界上最普遍的代谢疾病之一。5这是由两个主要原因的组合引起的:胰腺β细胞的不当分泌胰岛素分泌以及胰岛素敏感组织对胰岛素反应的失败。6因此,必须严格控制组织中胰岛素合成和释放的分子机制和组织中胰岛素反应。7因此,任何所涉及的缺陷都可能导致T2DM。遗传和环境变量影响其发展。肥胖,暴饮暴食,缺乏运动和遗传因素会影响胰岛素的产生和抗药性。7基于双家族研究,T2DM并发症的遗传率为40%。在2011年发表的一项研究中,发现36个以上的基因增加了T2DM的风险。8
摘要摘要:生长参数和细胞外摄取和生产通量的量化是系统和合成生物学的核心。通量,通过拟合细胞和细胞外底物和产物的浓度的时间顺序测量。非计算生物学家可以使用一种工具来计算细胞外通量,但几乎无法互操作,并且仅限于单个硬编码的生长模型。我们介绍了我们的开源通量计算软件Physiofit,可以与任何增长模型一起使用,并且可以通过设计可互操作。Physiofit包括一些最常见的增长模型,高级用户可以实施其他模型来计算遵循替代动力学的代谢系统或实验设置的细胞外通量和其他增长参数。Physiofit可用作Python库,并提供图形用户界面,以直观使用最终用户和命令行界面,以简化现有管道中的集成。可用性和实现:Physiofit在Python 3中实现,并在Windows,Unix和MacOS平台上进行了测试。Physiofit也可以在https://workflow4metabolomics.org上在线免费获得。源代码,数据和文档是在https://github.com/metasys-lisbp/physiofit/和https://physiofit.readthedocs.io/上自由分布的。
抽象量子计算是一个新的令人兴奋的领域,有可能解决一些世界上最具挑战性的问题。当前,随着量子计算机的兴起,主要挑战是创建量子算法(在量子物理学的限制下),并使不是物理学家的科学家可以使用它们。本研究提出了一个参数化的量子电路及其在估计离散值向量的分布度量时的实现。可以从这种方法中得出各种应用程序,包括信息分析,探索性数据分析和机器学习算法。此方法在提供对量子计算的访问并使用户可以在无量子物理学的情况下运行它是独一无二的。在数据集和具有不同参数的五个离散值分布上实现并测试了所提出的方法。结果显示了使用量子计算的经典计算与提出的方法之间的高度一致性。数据集获得的最大误差为5.996%,而对于离散分布,获得了5%的最大误差。
分子在强或超长的光耦合下构成了一种有趣的途径,以改变化学结构,性质和反应性。对此类系统的严格理论处理需要在相同的量子机械基础上处理物质和光子自由度。在分子电子强或超长耦合到一个或几个分子的状态下,希望使用量子量子化学的工具来处理分子电子度自由度,从而产生一种方法,该方法被称为Ab Initio量子量子量子量动力量动力(AI-QED),在该量子量子量子量子(AI-QED)中,该方法是光子的自由度。在这封信中,我们分析了AI-AQED的两种互补方法:(1)参数化的CQED(PQED),这是一种两步的方法,其中使用现有的电子结构理论计算了自由度,从而实现了严格的AI-QED Hamiltonians在许多基础上的构建,以多种电子方式来构建(2)cqsent efersonics selfsissics cqQQQQQQQQQQQQQQQQQQQQQQQQQESENT cq QQQQQQQQESEND cq QQQQQQESENT SERVENSINS(2)CQQQQQQQQQQQQESENT(2)CQQQQQQQQQQESENT(2)结构方法被推广为包括电子自由度和光子自由度之间的耦合。尽管这些方法在它们的确切限制上是等效的,但我们确定了在PQED方法中出现的两体偶极子自动能源运算符的投影与SCQED方法中的确切对应物之间的差异。我们提供了一个理论上的论点,即这种差异仅在完整的轨道基础和完整的多电子基础的限制下解决。我们提出的数值结果突出了这种差异及其在简单分子系统中的分辨率,在那里可以同时接近这两个完整的基础限制。此外,我们检查并比较了将每种方法融合到完整轨道和多电子基础所需的计算成本的实际问题。
城市弹性期货工具(Naturf)的邻域自适应组织是一个Python的工作流,可生成通过天气研究和预测(WRF)模型可读的文件。Naturf使用Geopandas(Jordahl等,2020)和汉密尔顿(Krawczyk&Izzy,2022)来计算带有建筑足迹和高度信息的Shapefiles的132个建筑参数。这些参数可以以多种格式收集和使用,并且主要输出是配置为输入到WRF的二进制文件。此工作流程是对国家/世界城市数据库和访问门户工具(Nudapt/Wudapt)的灵活适应(Ching等,2009; Mills等,2015),可以在任何空间分辨率的研究区域中使用。气候建模社区和城市规划师可以使用Naturf产生的城市参数和WRF可读文件来确定建筑/邻里形态对微气候的影响。有关计算的城市参数的更多信息可以在文档中找到。
是一种在基因组学领域中广泛使用的技术。但是,目前缺乏从纳米孔测序设备创建模拟数据的有效工具,这些工具以时间序列的当前信号数据的形式测量DNA或RNA分子。在这里,我们介绍了Squigulator,这是一个快速而简单的工具,用于模拟逼真的纳米孔信号数据。s弹器采用参考基因组,转录组或读取序列,并生成相应的原始纳米孔信号数据。这与牛津纳米孔技术(ONT)和其他第三方工具的基本软件兼容,从而为纳米孔分析工作流的每个阶段提供了有用的基板,用于开发,测试,调试,验证和优化。用户可以使用模拟特定ONT协议或无噪声“理想”数据的预设参数生成数据,或者他们可以确定性地修改一系列实验变量和/或噪声参数以满足其需求。我们提供了一个简短的用途示例,创建了模拟数据,以模拟不同参数影响ONT基本和下游变体检测准确性的程度。此分析揭示了对ONT数据和基本算法的性质的新见解。我们为纳米孔社区提供了旋转器作为开源工具。
摘要。我们开发了一种机器学习算法来推断控制多体系统序参量演化的随机方程。我们训练我们的神经网络来独立学习作用于序参量的定向力以及有效扩散噪声。我们使用具有 Glauber 动力学的经典 Ising 模型和接触过程作为测试案例来说明我们的方法。对于代表典型平衡和非平衡场景的两种模型,可以有效地推断出定向力和噪声。Ising 模型的定向力项使我们能够重建序参量的有效势,该序参量在临界温度以下形成特征性的双阱形状。尽管它具有真正的非平衡性质,但这种有效势也可以用于接触过程,并且其形状表示相变到吸收状态。此外,与平衡 Ising 模型相反,吸收状态的存在使噪声项依赖于序参量本身的值。
原子特征 大小(38) 描述 原子符号 11 [UNK、H、C、N、O、F、P、S、Cl、Br、I] (one-hot) 键度 6 共价键数 [0、1、2、3、4、5] (one-hot) 形式电荷 7 [-3、-2、-1、-0、1、2、3] (one-hot) 杂化 8 [未指定、s、sp、sp2、sp3、sp3d、sp3d2、其他] (one-hot) 手性 4 [未指定、四面体 CW、四面体 CCW、其他] (one-hot) 环 1 原子是否在环中 [0/1] (one-hot) 芳香性 1 原子是否属于芳香系统 [0/1] (one-hot) 键特征 大小(12) 描述 键类型 4 [单键、双键、三键、芳香] (one-hot) 共轭1 键是否为共轭键 [0/1] (one-hot) 环 1 键是否在环中 [0/1] (one-hot) 立体类型 6 [StereoNone, StereoAny, StereoZ, StereoE, Stereocis, Stereotrans] (one-hot)
这项工作的目的是提出一个热模型,以预测使用HVAC系统的小型汽车的客舱内的平均空气温度。所采用的模型是一个集体参数模型,该模型解释了作用在机舱上的九种热源。此外,该模型提出了一种方法,用于计算蒸发器出口处温度的方法,考虑到其入口和出口之间的线性温度下降是敏感热,潜热,蒸发器输入温度,绝对湿度,焓和特定热量的函数。在各种操作条件下在商用车上进行了16次实验测试,以验证所提出的模型。实验结果和理论结果之间的最大平均相对偏差为17.73%。