星期一25/11 13:30-15:30:CRISPR-CAS的基本原理(理论)。 div>15:45-16:30:实践活动简介(理论上)。 div>16:30-18:30:Arns指南设计(理论实践)。 div>星期二11/17 13:30-14:30:CRISPR系统表达系统(理论)14:30-18:30:通过对金属离子的亲和力(iMac)(iMac)(实用)纯化Cas9。 div>星期三11/27:30-15:30:CRISPR-CAS系统的多功能性:不同的系统和应用(理论)。 div>15:30-18:30:使用体外转录的RNA合成指南。 div>纯化Garns。 div> 原生质体生产(实用)。 div> 星期四:11/28 13:30-18:30:核糖核蛋白组装。 div> 在ANS指南的体外测试。 div> 统一版效率的生动生动策略:i)用核糖核蛋白转化原生质体; ii)暂时的大豆转化与根茎的农杆菌(毛根)(实用)。 div> 星期五29/11 14:30-15:30:编辑的原生质体的显示和计数(实用)15:45-18:00:编辑事件(理论上的实行)18:00-18:30的基因分型:结果的讨论(理论上实行)。 div> 星期一2/12(虚拟和面对面)13:30-18:30:例如在大豆中:改善非生物压力耐受性:启动子版。 div> 在P. Patens中:多基因家族的功能分析。 div> ,例如番茄:质量提高。 div> 星期二3/12(虚拟和面对面)13:30-16:30:研讨会的演讲。 div> 16:30-18:30:结束,讨论。 div>纯化Garns。 div>原生质体生产(实用)。 div>星期四:11/28 13:30-18:30:核糖核蛋白组装。 div>在ANS指南的体外测试。 div>统一版效率的生动生动策略:i)用核糖核蛋白转化原生质体; ii)暂时的大豆转化与根茎的农杆菌(毛根)(实用)。 div>星期五29/11 14:30-15:30:编辑的原生质体的显示和计数(实用)15:45-18:00:编辑事件(理论上的实行)18:00-18:30的基因分型:结果的讨论(理论上实行)。 div>星期一2/12(虚拟和面对面)13:30-18:30:例如在大豆中:改善非生物压力耐受性:启动子版。 div>在P. Patens中:多基因家族的功能分析。 div>,例如番茄:质量提高。 div>星期二3/12(虚拟和面对面)13:30-16:30:研讨会的演讲。 div>16:30-18:30:结束,讨论。 div>
24。灌木25。天上印度指示27。女士Palm Excel女士Aralia bexoana polysciascinas srub 29。Croton Codiaum Verietaum 30。jasminum srub 36。Rheo Tradescania 38。竹Daccaena Sandriana Srub 41。Potiary Pica 44。红色树篱光照射。
竞争利益H.R.U.是涵盖立方试剂(PCT/JP2014/070618(待处理)的专利申请的共同审核者,专利申请人是Riken,其他共同企业是E. A. Susaki和K. Tainaka; PCT/JP2017/jp2017/016410(perdister),pertister and Patens is co-co-co-co-co-co-co-co-co-co-septant is co- Murakami)和Cubicstars Inc. A.E.是与VDISCO清算有关的技术专利申请的申请人和发明人(PCT/EP2018/063098(待处理))。K.C. 是专利和专利申请的发明者或共同发明家(PCT/US2013/031066(Active),专利申请人是Stanford University,Co-Inventor,Coinventor是K. A. Deisseroth),随机电流(PCT/US2015/024297) (PCT/US2016/064538(待处理),申请人是马萨诸塞州技术研究所(MIT),其他共同发动机是E. Murray和J. H. Cho),Switch(PCT/US2016/064538(PCT/064538)申请人是麻省理工学院,其他共同发明人是T. Ku,J.M。Swaney和J. Y. 公园)和LifeCanvas Technologies的联合创始人。 V.G. is a co-inventor on patent applications covering PACT and PARS (PCT/US2014/048985 (active), applicant is California Institute of Technology, other co-inventors are V. Gradinaru and B. Yang) and adeno-associated virus (US14/485,024 (active), applicant is California Institute of Technology, other co-inventors are B. E. Deverman, P. H. Patterson和V. Gradinaru)技术。 P.J.K. P.T. 和A.C.声明没有竞争利益。K.C.是专利和专利申请的发明者或共同发明家(PCT/US2013/031066(Active),专利申请人是Stanford University,Co-Inventor,Coinventor是K. A. Deisseroth),随机电流(PCT/US2015/024297) (PCT/US2016/064538(待处理),申请人是马萨诸塞州技术研究所(MIT),其他共同发动机是E. Murray和J. H. Cho),Switch(PCT/US2016/064538(PCT/064538)申请人是麻省理工学院,其他共同发明人是T. Ku,J.M。Swaney和J. Y.公园)和LifeCanvas Technologies的联合创始人。V.G. is a co-inventor on patent applications covering PACT and PARS (PCT/US2014/048985 (active), applicant is California Institute of Technology, other co-inventors are V. Gradinaru and B. Yang) and adeno-associated virus (US14/485,024 (active), applicant is California Institute of Technology, other co-inventors are B. E. Deverman, P. H. Patterson和V. Gradinaru)技术。 P.J.K. P.T. 和A.C.声明没有竞争利益。V.G.is a co-inventor on patent applications covering PACT and PARS (PCT/US2014/048985 (active), applicant is California Institute of Technology, other co-inventors are V. Gradinaru and B. Yang) and adeno-associated virus (US14/485,024 (active), applicant is California Institute of Technology, other co-inventors are B. E. Deverman, P. H. Patterson和V. Gradinaru)技术。P.J.K. P.T. 和A.C.声明没有竞争利益。P.J.K.P.T. 和A.C.声明没有竞争利益。P.T.和A.C.声明没有竞争利益。是涵盖多视图像(US14/049,470(Active)的专利和专利申请的发明者或联合企业,申请人是Howard Hughes Medical Institute)和Adaptive Light-Seet显微镜(PCT/US2017/038970(待定),申请人是Howard Hughes Institute,Chers L. Chers L.罗耶)。
人工智能正在蓬勃发展,尤其是在日本。本报告将介绍日本人工智能的情况、相关参与者、市场、政策抱负、挑战,当然还有荷兰的机遇。日本的人工智能生态系统由公共和私营部门的投资共同组成,支持人工智能蓬勃发展的研究环境。日本政府由内阁府协调,并得到科学、技术和创新委员会和人工智能技术战略委员会的协助。他们的人工智能政策的执行分为三个部门:总务和通信部、经济、贸易和工业部和教育、文化、体育、科学和技术部。从私营部门来看,日本三大产业在人工智能相关发展中非常活跃:汽车、机器人和电子产业。在这些行业中可以发现几种不同类型的跨部门和国际关系。在这三个行业中,汽车行业在研发上的投入最多。可以断定人工智能市场是一个机遇。2018 年至 2025 年期间,全球人工智能市场预计年复合增长率在 33% 至 55% 之间。到 2025 年,人工智能全球市场价值预计将达到 1560 亿至 3600 亿欧元。预计到 2025 年,亚太地区将取代北美成为全球人工智能市场的第一大地区。到目前为止,日本有 200 到 300 家与人工智能相关的公司。日本是全球最大的工业机器人供应商,在人工智能研发方面位居第三,仅次于中国和美国。在 AI 专利方面,东芝是日本贡献最大的公司,位居世界第三,仅次于 IBM 和微软。日本的目标是在高科技领域保持领先地位,而 AI 是其重要组成部分之一。日本希望通过其设想的未来社会“Society 5.0”,在其政策中利用 AI 来解决自己的社会问题。由于 AI 被称为核心技术,它已进入多项政策提案,如日本的 Moonshot 计划(类似于欧洲的 Horizon2020)和跨部门战略创新促进计划。SCAIT 制定了专门针对 AI 发展的战略,包括三个轨道。第一条轨道是生产力,重点是提高创造力和创新服务。第二条轨道是健康、医疗和福利,源于应对快速老龄化社会的迫切需要。最后,第三条轨道,移动性旨在让每个人都能自由、安全和环保地出行。日本面临着一些社会问题,其中一些问题荷兰也有过类似的经历。日本面临的一个主要问题是其快速老龄化社会,到 2030 年,日本将有 40% 以上的人是老年人。这给劳动力和医疗保健系统带来了压力。这种压力也是人工智能增强护理机器人和工业机器人发展的动力。当然,由于这份报告是在全球 COVID-19 大流行期间撰写的,从启动这个项目到最终完成,世界已经并且仍在迅速变化。过去几个月出现了一些新的发展。与人工智能相关,疫情似乎导致某些行业短期预算削减,但也引发了人工智能驱动的解决方案,并推动了人工智能发挥根本作用的传统体育活动的更快数字化。总而言之,尽管疫情肆虐,但人工智能仍在蓬勃发展。日本为荷兰私营部门、政府机构交流最佳政策实践以及研究人员拓宽专业知识提供了许多机会。