LIFT-CM POCT分析系统,其中包括一个加热平台,离心模块和实时荧光检测。它是紧凑的,易于使用的,并且由智能手机应用程序控制,从而减少了对多个实验室仪器的需求。这使CRISPR-DX技术在资源有限的设置中更加实用。
国际航空旅行现在被广泛认为是导致 SARS-CoV-2 跨国流动和全球传播的主要机制之一。监测从飞机和航空运输枢纽收集的人类废水中的病毒载量和新谱系已被提议作为监测病毒病原体输入频率的有效方法。然而,这种方法的成功在很大程度上取决于航空乘客在旅途中的卫生间和排便习惯。在这项针对英国成年人(n = 2103)的研究中,我们量化了短途和长途航班出发前、飞机上和抵达时排便的可能性。然后使用结果来评估在英国旅行枢纽捕获受感染个体信号的可能性。为了获得具有代表性的人口横截面,调查按地理区域、性别、年龄、育儿状况和社会阶层进行了分层。我们发现,个人在短途航班(飞行时间 < 6 小时)上排便的可能性较低(< 总数的 13%),但在长途航班上排便的可能性较高(< 36%;飞行时间 > 6 小时)。这种行为模式在男性和年轻年龄组中更为常见。排便的最大可能性是在出发前(< 39%)。根据已知的 SARS-CoV-2 粪便排泄率(30 – 60%)以及感染者在短途(71% 的入境航班)和长途航班(29%)上的概率相等,我们估计飞机废水可能捕获约进入英国的 SARS-CoV-2 病例的 8 – 14%。蒙特卡洛模拟预测,在
口腔链球菌属于草绿色链球菌群 (VGS),被认为是主要栖息在口腔中的正常菌群的一员。然而,最近人们越来越多地认识到它是各种危及生命的传染病(如感染性心内膜炎 (IE) 和脑膜炎)的病原体。此外,人们已经讨论了口腔链球菌和其他 VGS 种在机会性感染的患病率、临床特征和预后方面的差异。特别是口腔链球菌在 IE 中的优势引起了人们的密切关注。在可能致命的感染中,临床上忽视口腔链球菌作为诱发因素可能会严重阻碍早期诊断和治疗。然而,到目前为止,与口腔链球菌相关的传染病尚未得到全面描述。因此,本综述将概述口腔链球菌引起的传染病,以揭示其作为机会性病原体的隐藏作用。
建筑环境的微生物组包括与人造结构相关的细菌,古细菌,真菌和病毒群落。尽管大多数这些微生物都是良性,但抗生素耐药的病原体可以在室内定植并出现,从而通过表面传播或吸入产生感染风险。几项研究已经在不同的环境类型中分类了微生物组成和生态。这些已告知体外研究,试图复制促进致病性生存和传播的物理化学特征,最终促进了用于减少病原体积累的干预技术的发展和验证。这种干预措施包括在表面上使用基于芽孢杆菌的清洁产品或将杆菌整合到可打印材料中。尽管这项工作仍处于起步阶段,但早期的研究表明,有可能使用微生物生物防治来减少医院和家庭获得的多药耐药感染。尽管这些技术有希望,但迫切需要更好地了解建筑环境的微生物生态,并确定这些生物控制溶液如何改变物种相互作用。本评论涵盖了我们当前对建筑环境微生物生态学的理解,并提出了将知识转化为有效的抗生素耐药病原体生物防治的策略。
已经提到了achromobacter属的微生物是机会性感染的原因,主要是在囊性纤维化或肺淋巴瘤的患者中,其中achromobacter xylosoxidans在很大程度上被鉴定出来。A。木糖氧化剂于1971年首次描述,是一种机会性病原体。然而,据报道会引起慢性化脓性耳炎,脑膜炎,肺炎,腹膜炎和尿路感染,慢性阻塞性肺部疾病和其他感染。目前的文献综述旨在分析和综合木糖氧化曲霉的最新技术及其作为医疗保健环境中新兴病原体的潜力。我们讨论A.木糖氧化菌是与医疗保健感染相关的新兴机会病原体。这篇综述进一步讨论了木糖氧化曲霉在医疗保健环境中的流行,其感染的类型以及获得木糖氧化曲霉感染的危险因素。该评论还涵盖了治疗木糖氧化曲霉感染的挑战,包括其耐药性和缺乏特定治疗的潜力。还讨论了在医疗保健环境中预防和控制A.木糖苷感染的策略。
植物是世界各地食物,衣服和庇护所的主要来源。在气候变化和外部投入(例如水,肥料和耕地)下,喂养不断增长的世界人口是人类面临的最紧迫的挑战之一。小麦是一种主要的粮食作物,在人类饮食中提供超过20%的卡路里和蛋白质,以及维生素,饮食纤维和植物化学物质1。病原体和害虫每年导致面包小麦的全球产量损失20%。要实施有效的遗传和生物技术方法来减少由于疾病而导致的损失,科学家需要对植物限制病原体的基本理解。然而,由于它们的大且重复的富含基因组,植物部落triticeae(包括小麦,大麦和黑麦)中抗病基因(R-Genes)的克隆仍然具有挑战性。基于基因组学基因克隆方法的最新发展促进了在Triticeae 3中发现非规范R-Gene家族的发现。在本期《自然遗传学》中,Wang等人的论文。4和Yu等。5描述了两个小麦抗病基因的鉴定,这些基因具有源自小麦野生亲戚的新型结构,均包含激酶与其他结构域的融合,此处指定为激酶融合蛋白(KFPS)(图。1)。
如果在临床支付和编码政策与成员有权获得承保服务的任何计划文件之间产生冲突,则计划文件将管理。如果CPCP与提供者参与和/或为合格成员和/或计划提供涵盖服务的任何提供商合同之间发生冲突,则提供者合同将管理。“计划文件”包括但不限于医疗保健福利证书,福利手册,摘要计划描述和其他承保文件。TX的Blue Cross和Blue Shield可能会使用合理的酌处权解释并将此政策应用于在特定情况下提供的服务。TX的Blue Cross和Blue Shield在任何适用的计划文件下提供的范围内具有全部和最终的酌情权限,用于解释和应用。
(未经同行评审认证)是作者/资助者。保留所有权利。未经许可不得重复使用。此预印本的版权所有者此版本于 2020 年 6 月 11 日发布。;https://doi.org/10.1101/2020.06.11.145920 doi:bioRxiv preprint
蜡状芽孢杆菌是一种常见的食源性病原体,是人类食物中毒的重要原因。蜡状芽孢杆菌引起的疾病通常表现出两种主要症状,即呕吐或腹泻,具体取决于产生的毒素。据推测,在摄入受污染的蔬菜或加工食品后,产肠毒素的蜡状芽孢杆菌孢子会到达肠道,在那里发芽并产生导致食物中毒的肠毒素。在我们的研究中,我们观察到,孢子形成是蜡状芽孢杆菌在叶子中生存所必需的,但在即食蔬菜(如菊苣)中是可有可无的。我们证明,最初在孢子形成方面受损但在生物膜形成方面没有受损的蜡状芽孢杆菌营养细胞能够到达肠道并在小鼠模型中引起严重疾病。此外,我们的研究结果
病原体被定义为一种传染性微生物或病原体,其中病毒和细菌是临床上最常见的(Casadevall and Pirofski,2002)。这些病原体具有高度可进化性、致病性和迅速传播性,对人类健康构成严重威胁。微生物控制计划越来越多地被全社会采用,以降低消费者感染的风险。细菌培养法因其在常见实验室实验中的稳健性而被广泛认为是病原体检测的“金标准”。然而,它具有耗时、费力和检测效率低等缺点,这严重阻碍了其在临床上的广泛使用。另一种方法是免疫检测,它基于特异性抗体对抗原的识别和结合(Kohl and Ascoli,2017)。虽然它在检测病原微生物方面具有速度快、简单、特异性强等优势,但需要较长的抗体制备时间,检测灵敏度也较低。核酸检测技术与上述方法不同,能够同时满足病原体检测的准确性、快速性和灵敏度的要求,在保障人类安全方面更显优越性。