由于实验技术的发展以及数据的积累,生物学和分子过程的积累可以描述为信号通路的复杂网络。这些网络通常是定向和签名的,其中节点代表实体(基因/蛋白质)和箭头相互作用。通过将动态层添加到它们中,它们被转化为数学模型。这种数学模型有助于理解和解释非直觉的实验观察结果,并预测对外部干预措施(例如药物对表型的影响)的反应。存在一些用于建模信号通路的框架。适当框架的选择通常是由实验环境驱动的。在这篇综述中,我们提出了Maboss,这是一种基于连续时间方法基于布尔建模的工具,该工具可以预测不同生物学环境中实体的时间依赖性概率。Maboss最初是为了建模非相互作用的均匀细胞弹出中的细胞内信号传导。maboss,以改编成模型的异质细胞群体(Ensemblemaboss)。为了解决更复杂的问题,Maboss扩展了以模拟动态相互作用的种群(UPMABOSS),并具有精确的空间分布(Physiboss)。为了说明所有这些描述级别,我们展示了如何将这些工具中的每一种都用于一个简单的细胞命运决策模型的示例。最后,我们介绍了癌症生物学和免疫反应研究的实际应用。2022由Elsevier B.V.代表计算和结构生物技术的研究网络发布。这是CC BY-NC-ND许可证(http://creativecommons.org/licenses/by-nc-nd/4.0/)下的开放访问文章。
*通讯作者。j.h.veldink@umcutrecht.nl。†这些作者作为首位作者也同样为这项工作做出了贡献。‡这些作者同样为这项工作做出了同样的贡献,因为共同作者§A作者名单及其隶属关系出现在本文的末尾。作者贡献:样本确定和数据生成由P.J.H.,R.A.J.Z.,E.H.,G.L.S.,M.F.N.,E.M.W.,W.V.R.,J.J.J.J.F.A.V.V.V.V.V.V. N.T. P.A.M.,M.N.,G.N.,D.B.R.,R.P.,K.A.M. M.P.,M.D.C.,S.P.,M.W.,G.R.,V.S.,J.E.L.,C.E.S.,P.M.A.,A.F.M.,M.A.V.E.wgs由P.J.H.,R.A.J.Z.,W.V.R.,J.J.F.A.V.V.V.,A.M.D.,G.H.P.T.,K.R.V.E.WGS质量控制是由P.J.H.,R.A.J.Z.,W.V.R.,J.J.F.A.V.V.,M.M.,K.P.K.,P.V.D。和J.H.V.数据分析是由P.J.H.,R.A.J.Z.,E.H.,J.M。和J.H.V.进行的。手稿的写作是由P.J.H.,R.A.J.Z.,J.M。和J.H.V.完成的。修订手稿由P.J.H.,R.A.J.Z.,M.F.N.,W.V.R.,J.J.J.F.A.V.V.V.,H.-J.W.,D.B.,R.J.P.,R.J.P.,R.J.P.,N.R.W.
摘要 克罗恩病 (CD) 患者的肠粘膜被粘附侵袭性大肠杆菌 (AIEC) 异常定植。AIEC 感染后,宿主细胞中会诱导自噬以抑制细菌细胞内的复制。但其潜在机制仍然未知。在这里,我们研究了 EIF2AK4-EIF2A/eIF2 a -ATF4 通路在 AIEC 感染自噬反应中的作用。我们发现,用 AIEC 参考菌株 LF82 感染人肠上皮 T84 细胞会激活 EIF2AK4-EIF2A-ATF4 通路,磷酸化 EIF2AK4、磷酸化 EIF2A 和 ATF4 水平升高就是明证。EIF2AK4 耗竭抑制了 LF82 感染后自噬激活,导致 LF82 细胞内复制增加和促炎细胞因子产生增加。从机制上讲,EIF2AK4 耗竭抑制了 LF82 诱导的 ATF4 与多个自噬基因(包括 MAP1LC3B、BECN1、SQSTM1、ATG3 和 ATG7 )的启动子结合,进而抑制了这些基因的转录。LF82 感染野生型 (WT) 而非 eif2ak4 ¡ / ¡ ,小鼠激活了 EIF2AK4-EIF2A-ATF4 通路,诱导了肠细胞中的自噬基因转录和自噬反应。因此,eif2ak4 ¡ / ¡
在过去的十年中,人们越来越认识到卫生系统不仅容易受到气候变化的影响,而且通过他们的活动促成了卫生系统。这种认识已导致整个卫生部门的广泛承诺,以减少对环境的影响,而英格兰国家卫生局(NHS England)是第一个承诺在2045年成为零净零的国家卫生服务局,将环境目标纳入立法。1也正在更新NHS宪法,将环境责任包括为其核心职责之一。2超过70个国家加入了由世界卫生组织(WHO)率领的气候和健康行动联盟(ATACH),致力于低碳和环境弹性的卫生系统,3和151个国家认可COP28 UAE在气候和健康方面宣告,并认识到这种强大的气候行动将对人类健康和人为健康的健康系统的良好益处,这将使人类健康和健康系统造成巨大的益处。4通过基于科学的目标倡议增加了这一势头,卫生部门的80家公司致力于将其脱碳计划与全球变暖极限目标保持一致。自2020年以来,参与该计划的公司数量增加了一倍。5
摘要 TLR 的一个子集专门通过对内体进行核酸检测来检测进入的病原体。其中,TLR3 感知内体中双链 RNA 的异常存在,并通过激活 NF- j B 和 IRF3 启动强大的先天免疫反应。然而,控制 TLR3 调节的机制仍然不甚明了。为了确定参与 TLR3 通路的新分子参与者,我们使用 CRISPR/Cas9 技术进行了全基因组筛选。我们生成了携带 NF- j B 反应启动子的 TLR3 + 报告细胞,该启动子控制 GFP 表达。接下来用单向导 RNA (sgRNA) 文库转导细胞,用 poly(I:C) 进行连续刺激,并对 GFP 阴性细胞进行分类。通过深度测序估计的 sgRNA 富集确定了 TLR3 诱导的 NF-j B 激活所需的基因。在这些基因中,通过筛选确定了五个已知与 TLR3 通路密切相关的基因,包括 TLR3 本身和伴侣 UNC93B1,从而验证了我们的策略。我们进一步研究了前 40 个基因,并重点研究了转录因子芳烃受体 (AhR)。AhR 的消耗对 TLR3 反应有双重影响,消除了 IL-8 的产生并增强了 IP-10 的释放。此外,在暴露于 poly(I:C) 的原代人巨噬细胞中,AhR 激活增强了 IL-8 并减少了 IP-10 的释放。总体而言,这些结果表明 AhR 在 TLR3 细胞先天免疫反应中发挥作用。
中枢神经系统(CNS)疾病领域的治疗未来无疑在于发展有针对性的个性化疗法。尖端技术的不断扩展的工具包使研究人员能够对人脑的复杂性进行前所未有的见解,从而揭示了控制神经系统健康的复杂生理途径。本社论介绍了细胞神经科学领域的研究主题中介绍的一系列研究,所有这些都集中在细胞内信号网络的失调上,在神经系统疾病中起着关键作用。这些研究不仅对这些疾病的病理生理学有了新的观点,而且还具有开发有效治疗和可能治愈的新希望。这些创新的核心是对大脑独特且高度专业的本性的认可。每个结构,每个神经元电路和大脑中的每个单元在调节情绪,记忆,认知和行为中都具有特定的作用。必须保留这些元素的精细平衡以进行健康的神经功能。这种微妙的平衡对新疗法的发展提出了一个关键的问题:次优疗法的后果是什么,特别是在影响大脑的疾病中?如何仔细权衡实验疗法的风险和利益,以确保尊重患者的尊严,尤其是当赌注如此之高的情况下?(Maidment等,2024)。在本研究主题中,我们提供了一系列研究,以帮助解决这些复杂的问题。这样的贡献来自Marino等。,探索“脑雾”现象的人,这是接受放疗脑癌经常经历的认知疾病。Marino等人最初可能看起来像是隐喻的。认为,“大脑雾”实际上是一种独特的治疗后条件,可以对认知功能具有长期影响。这种现象在经常接受放疗的胶质母细胞瘤患者中特别明显。这项研究强调了了解脑雾背后的生物学机制的关键需求,尤其是蛋白质错误折叠和小胶质细胞的作用
核酸感应是先天免疫系统的重要组成部分,而核酸传感器属于一类受体,被广泛称为模式识别受体 (PRR)。PRR 最初是作为对病原体的免疫反应的一部分进行研究的。该概念指出,宿主需要受体以非特异性的方式广泛感知入侵的病原体,并触发启动病原体特异性适应性免疫反应所需的细胞的激活。根据这一核心概念,PRR 识别病原体相关分子模式 (PAMP),它由入侵病原体的部分组成,例如它们的核酸基因组。PRR 与 PAMP 的结合会在受感染细胞中诱导信号级联,导致产生细胞因子,包括干扰素,这些细胞因子会分泌到细胞外环境中。这些细胞因子具有多种作用,例如促进邻近细胞对感染的抵抗力和募集对适应性反应至关重要的免疫细胞。然而,PRR 如何区分宿主核酸(自身)和病原体来源的核酸(非自身)一直受到研究。此外,由于在传染性或非传染性病理过程中出现的危险相关分子模式 (DAMP),并且可以包括自身核酸,因此 PRR 可以在无菌条件下(即没有病原体的情况下)被激活。识别这些激活 PRR 的自身核酸的性质是一个正在进行的研究领域,可以为自我/非自我识别的机制提供信息。新的 PRR 仍在被发现,并且 PRR 除了产生细胞因子之外的作用也在不断报道。因此,核酸传感领域正在多个层面上扩展,本研究课题旨在拓宽我们对这一复杂研究领域的视野。
糖尿病 (DM) 是最常见的慢性代谢疾病之一,其主要特征是血糖水平持续升高。这种情况通常源于胰岛素分泌不足或胰岛素本身的功能缺陷。临床上,糖尿病主要分为 1 型糖尿病 (T1DM) 和 2 型糖尿病 (T2DM),其中 T2DM 占所有确诊病例的近 90%。值得注意的是,近几十年来,全球 T2DM 发病率急剧上升。腺苷酸活化蛋白激酶 (AMPK) 信号通路在调节细胞能量代谢方面至关重要,使其成为糖尿病及其相关并发症的重要治疗靶点。天然产物具有来源多样、生物活性多方面和相对安全的特点,在调节 AMPK 通路方面具有相当大的前景。这篇综述文章探讨了针对 AMPK 信号通路的天然产物研究进展,旨在为创新抗糖尿病疗法的开发提供信息。
需要在各个领域采取紧急而大胆的行动,包括制定清晰的愿景和具有法律约束力的目标、加强政策协调、营造有利于健康和可持续饮食的食品环境、将食品生产纳入更广泛的发展视角以及加强创新(Ambikapathi 等人,2022 年;Asquith 等人,2022 年)。其他领域包括改进生产方法以提高环境复原力、减少农药和抗菌素的使用、向更少的动物养殖转型、转向植物性饮食、最大限度地减少粮食损失和浪费、确保公平转型以及支持保障粮食安全和环境的全球转型。欧盟的“从农场到餐桌”(F2F)战略(欧盟委员会,2020a)和欧盟未来农业战略对话(欧盟委员会,2024)等政策与此观点相契合,旨在加速向公平、健康和环境友好的食品体系转型(Schebesta 和 Candel,2020 年)。向可持续粮食体系转型既是经济机遇,也是实现《欧洲绿色协议》目标的基石。这对于提高初级生产者收入和提升欧盟竞争力至关重要。欧盟政策对于推动这一转型至关重要,它能够将粮食从商品的认知转变为公共利益——这一范式转变被称为“粮食大转型”(欧盟研究总司和首席科学顾问组,2020年)。
建立本尼乳杆菌作为鲁棒的生物效果使诸如靶蛋白 /引入酶的产品毒性和蛋白水解降解等问题变得复杂。在这里,我们研究了生物分子冷凝水是否可以用于解决这些问题。我们使用合成模块化支架的瞬时表达在N. benthamiana叶片中设计了生物分子冷凝物。所产生的冷凝物的体内特性与它们是具有多组分相分离系统的热力学特征的液体样物体一致。我们表明,将酶募集到体内冷凝物中导致单步代谢途径和三步代谢途径(柑橘酸盐生物合成和poly-3-羟基丁酸酯(PHB)生物合成)的倍数增加。这种增强的产量可能是出于多种原因,包括改善的酶动力学,代谢产物通道或避免通过在冷凝物内保留途径产物的细胞毒性,这证明了PHB的证明。但是,我们还观察到将其靶向冷凝水的酶累积的数量增加了几倍。这表明将酶定位于冷凝水时比在细胞质中自由扩散时更稳定。我们假设这种稳定性可能是增加途径产品生产的主要驱动力。我们的发现为利用植物代谢工程中的生物分子冷凝物的基础为基础,并推进了本泰米亚纳州,作为工业应用的多功能生物效果。