摘要 本文将介绍 SatixFy 为再生处理器有效载荷设计的 SDR ASIC,并从技术和商业角度介绍在现代 UHTS 和 LEO 星座中使用再生处理器的理由。与基本的弯管设计相比,再生有效载荷可提供更高的性能、更低的延迟、支持网状连接、简化非 GEO 星座的实施以及更好的可用性。另一方面,它可能需要更多的机载处理能力并保证面向未来的设计。即确保在卫星的整个生命周期内支持用户所需的通信协议。随着能够在上下行链路方向支持大带宽的软件定义无线电 ASIC 的引入,面向未来的再生有效载荷的实现比以往任何时候都更接近。本文将介绍 Satixfy 为有效载荷设计的 SDR ASIC,包括设计的抗辐射方面。 1. 简介 现代卫星系统,如 LEO 星座和 GEO UHTS,有望实现更高的容量和更低的每 Mbps 成本。然而,这些成本在多个方面需要以不同于过去的系统的方式解决。用户和网关之间要传输的大量信息对网关成本、位置、GEO 和 LEO 星座的效率提出了挑战。本文表明,再生式机载处理有效载荷提供了一种良好的解决方案,而现代硅片和通信技术可以缓解未来防护和功耗等问题。 2. 网关链路和相关挑战 现代 UHTS 卫星和 LEO 星座将以 1Tbps 数量级的速率向用户提供数据服务。网关大小取决于网关链路预算。如 [3] 和表 1 所示,典型的弯管 GEO 前向链路计划在波束峰值上提供 2.6 b/Hz,在峰值 ~9.5dB 时在波束 @ Es/No 上提供 2 b/Hz 平均值。返回链路较差,通常为 ~1-1.5 b/Hz(平均为 1.2b/Hz)。在 LEO 情况下,也采取类似的假设,考虑到由于卫星往返远程用户的移动而导致的更大动态范围变化。在弯管实施的情况下,GW 链路的效率与用户链路相同,平均为 2 b/Hz。在这样的弯管系统中,GW 链路效率与用户链路相同,GW 容量受 Ka 或 Q/V 频段的总带宽可用性限制。1Tbps 卫星将需要 500 GHz 的总 GW 容量。在 Ka 频段使用 2.5 GHz 和 2 个极化将需要 100 个独立的 GW 位置。对于回传信道,载波通常基于 MF-TDMA,大小为 1-10MHz。假设 1:4(现代网络比率)需要 250Gbps 的回传链路。使用平均 5MHz 载波会产生 (@1.2b/Hz, 20% RO) 50,000 个载波。在 LEO 弯管的情况下,复杂性会增加,因为您需要为全球每个覆盖兴趣区在卫星视线范围内设置一个 GW。当覆盖 AERO 和海上路径时,这要求在海洋中设置 GW 位置和相关回程。
职位: 2017 年 - 日本大学空间工程联盟 (UNISEC) 主席 2017 年 - UNISEC CubeSat 实践教育计划 HEPTA-Sat 项目经理 2019 年 - 日本大学航空宇宙工程系副教授 2019 年 - 6U 地震前兆研究 CubeSat Prelude-Sat 项目经理:Prelude
将有效载荷封装在立方体卫星结构内,通过标准、定义明确的接口进行通信,大大简化了机载实验的开发和测试。客用有效载荷从托管航天器的主总线接收电力、电信和热控制。控制托管航天器方向的能力使有效载荷操作员能够在不同的光照和黑暗条件下进行测试和实验,或将其指向多个轨道上的全球不同区域。发射和运营成本捆绑在标准服务包中,定价方案可预测,不含非经常性成本,降低了在轨操作有效载荷所需的准入门槛。
提供的服务:•开发有效载荷遥感系统•设计和测试光学机械支持系统和空间光学系统•开发信号和图像处理技术•实施软件,用于目视测试卫星的空间有效负载•实施卫星空间的电子测试软件
在Nova-C Lander上的有效载荷中,IM-2任务将提供第一个原位(即现场),使用钻头和质谱仪来测量地下材料的挥发物(易于蒸发)含量的挥发物(气体)。此外,安装在降落机顶部甲板上的一个被动激光逆转录器阵列将反射或弹跳任何激光光,将其击回源(即轨道或接入的航天器),以准确地确定陆地机的位置,以固定标记的位置,并在lunar cortiber上靠距离。此交付上的其他技术工具将展示一个强大的表面通信系统,并部署可以在月球表面跳入永久阴影区域的推进无人机。
Delta IV 有效载荷规划指南将定期修订,以纳入最新信息。我们鼓励您返回下面的修订服务卡,以确保您被列入 Delta IV 有效载荷规划指南未来修订的邮寄名单中。您的地址变更应在提供的空间中注明。
与蒙彼利埃大学航天中心(CSUM)合作开发,ENSO(用于太阳 - iRradiance观察的纳米纳斯特)是一个R&D立方体,旨在通过帮助测量太阳能活动及其对地球的影响来帮助电离层表征电离层。