简介:蓝色起源致力于建设一条通往太空的道路,以便下一代能够利用无限的太空资源并改善地球上的生活。借助蓝色月球,该团队定义并开发了最先进的月球着陆器架构,以提供可靠、低成本的发射和商业月球运输工具,从而实现繁荣的地月和月球表面生态系统。蓝色月球 Mark-1 (MK1) 是蓝色起源的单次发射、消耗性货运着陆器,旨在将有效载荷和数公吨的货物送入月球轨道并降落到月球表面,提供安全、可靠且经济实惠的月球环境访问。这种庞大的容量与强大的电力、热能和数据服务以及精确着陆到任何月球目的地的能力相结合,使 MK1 成为科学、技术、探索和商业的市场领先平台。
CSA / NASA mission collaborations: • Alouette / ISIS • WINDII on UARS • Fine Error Sensor on FUSE • MOPITT on TERRA • Radar components on Cloudsat • THEMIS • MET station on Phoenix lander • APXS on Curiosity Rover • Canadarm 1 on Shuttle • Canadarm 2 and Dextre on ISS • Various ISS payloads • OLA on Osiris-Rex • FGS and JWST上的Niriss•SWOT上的扩展互动Klystron•Gateway上的CanadArm3•未来的月球流浪者
Scientific PI of two scientific payloads: Dust Analyzer for Chinese asteroid mission (2021-2025) & Solar X-ray Detector for “Aoke-1” Satellite (2020-2022) Macau Natural Science Award 2016 (First Prize) & 2022 (Second Prize) FDCT – 2022-2025 – PI – Study on electrostatic migration mechanism of dust in space environment FDCT – 2019-2022 – PI - Chang'e-4 Lunar勘探数据NSFC-FDCT的科学分析 - 2017-2020 - PI - 关于某些主要核反应的理论研究及其在火星辐射环境研究中的应用FDCT - 2014- 2017年 - PI - PI - PI- PI - 有关Lunar Dust
1) Acquisition and management of launch services, Deep Space Logistics project, and commercial crew systems development and operations, 2) Certification of new commercial launch vehicles to launch high-value civil sector payloads, 3) Launch vehicle and spacecraft processing, including servicing, maintenance, command, control, telemetry, launch, landing, recovery, operations, including support for processing crews, 4) Payload and flight science experiment processing, assembly,集成和测试,5)设计,开发,操作和维持飞行和地面系统以及支持基础设施,包括集成和测试,以及6)开发,测试和演示先进的飞行系统和转型技术,以推进勘探和空间系统。
当前设施能力:如今,在国际空间站上,科学家有能力在轨道内和舱外执行广泛的科学研究。对于加压环境之外的有效载荷,我们拥有无线和有线数据连接、加热和冷却功能以及远程控制电源连接。一些有效载荷具有手动控制机制,可在发生异常时由机器人操作。对于在国际空间站加压空间内运行的有效载荷,POIC 拥有多个标准化有效载荷机架,提供一套资源,即 ExPRESS 机架和基本 ExPRESS 机架 (BER)、两个用于需要封闭清洁环境的实验的手套箱,以及部署的有效载荷在舱内其他地方运行以进行自适应操作的能力。ExPRESS 机架可以提供电力、数据、冷却、烟雾探测、氮气、真空和指挥能力,同时保持有效载荷开发人员可以构建的标准尺寸。BER 更简单,不提供真空或氮气,但允许比标准 ExPRESS 机架中的有效载荷更大的有效载荷。
简介:随着我们进入 21 世纪,太空技术和探索从未像今天这样容易获得。世界上现有的技术的复杂性已显著发展,这使我们能够每年将越来越多的有效载荷送入太空。在过去几年中,毫无疑问,将有效载荷发射到太空的需求有所增加。为了进一步支持这一点,下图 1 显示,仅 2021 年,美国就向太空发射了大约 1750 个有效载荷。然而,发射有效载荷数量的大幅增加确实带来了巨大的环境影响。过去几年,气候变化一直是全球热门话题。人们一直在推动大型企业和公司做出改变,并更加关注他们在生产产品过程中释放的排放物。在太空探索和有效载荷发射的情况下,这些进入轨道的卫星在地球上留下大量碳足迹也就不足为奇了。这已成为人们关注的问题,因为它无助于我们减少满足《巴黎协定》所需的碳排放。 SpinLaunch 是一家加州科技公司,在与 NASA 签约后获得了关注。NASA 将与他们合作测试他们的环保方法,这种方法革新了我们向太空发送有效载荷的方式。他们计划使用被《纽约邮报》称为“巨型弹弓 [1]”的东西将有效载荷发射到太空。他们的系统“预计比传统卫星发射少 70% 的燃料。[2]”这是因为释放有效载荷的机制不需要火箭,因此减少了每次发射的排放。
1 (a) 轨道发射尝试 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 6 3 商业发射与政府发射 .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 6 2022 年发射的有效载荷,按所有者国家和类别划分 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 10 2022 年发射的 SSO 卫星,按下降节点当地时间排序 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 17 2022 年不受控制的再入 . . . . . . . . . . . . . . 47 18 2022 年最大规模的不受控制的再入 . . . . . . . . . . . . . . . 48 19 2022 年着陆和脱轨 . . . . . . . . . . . . . . . . . . . . 49 20 发射后不久脱离轨道的火箭,2022 年 . . . . . . . . . . . . . 50 21 分离后不久脱离轨道的火箭,2022 年 . . . . . . . . . . . . . . . 52 22 地球静止轨道卫星数量 . . . . . . . . . . . . . . . . . . . . ...