网络犯罪分子将始终创新。随着检测有所改善,反对一种攻击或战术,他们将继续尝试寻找绕过安全性并导致目标成为受害者的新方法。为了使未来的检测功效,组织需要进行反向钓鱼防御能力,这些防御能力将智能技术与最佳实践方法结合起来。整体分析入站电子邮件的各个方面(包括技术方面,附件和身体副本)意味着解决方案功效并不依赖于检测已知的有效载荷,而是导致准确识别具有零日,出现和混淆的有效载荷的网络钓鱼攻击,甚至无用的有效载荷播放式电子邮件 - 甚至是无用的有效播放电子邮件,依赖于社交机关进行了依靠社交机能。
1 (a) 轨道发射尝试 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 6 3 商业发射与政府发射 .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 6 按所有者国家和类别发射的 2023 有效载荷 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 11 2014 年至 2023 年年底在轨碎片物体数量 . . . . . . . . . . . . . . . . . . . . . . . . . 25 12 2014 年至 2023 年年底在轨物体质量(吨) . . . . . . . . . . . . . . . . . . 26 13 2023 年轨道发射及发射相关地球轨道碎片数量 . . . . . . . . . . . . . . . . 32 14 2023 年不受控制的再入 . . . . . . . . . . . . . . . . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... 44 2023 年发射的 19 颗 SSO 卫星,按降交点地方时排序 . . . . . . . . . 45 2023 年发射的 19 颗 SSO 卫星,按降交点地方时排序 . . . . . . . . 46 2023 年发射的 19 颗 SSO 卫星,按降交点地方时排序 . . . . . . . . 47 2023 年发射的 19 颗 SSO 卫星,按降交点地方时排序 . . . . . . . . 48 2023 年发射的 19 颗 SSO 卫星,按降交点地方时排序 . . . . . . . . 49 2023 年发射的 19 颗 SSO 卫星,按降交点地方时排序 . . . . . . . . . 50 2023 年发射的 19 颗 SSO 卫星,按降交点地方时排序 . . . . . . . . 51 2023 年发射的 19 颗 SSO 卫星,按降交点地方时排序 . . . . . . . . . 52 20 2023 年发射的地球静止卫星,按经度排序 . . . . . . . . . . . . . .53 21 GEO 数量 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .... .... .... .... 56
1 (a) 轨道发射尝试 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 6 3 商业发射与政府发射.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 6 按所有者国家和类别发射的 2023 有效载荷 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 11 2014 年至 2023 年年底在轨碎片物体数量 . . . . . . . . . . . . . . . . . . . . . . . . . . 25 12 2014 年至 2023 年年底在轨物体质量(吨) . . . . . . . . . . . . . . . . . . 26 13 2023 年轨道发射及发射相关地球轨道碎片数量 . . . . . . . . . . . . . . . . 32 14 2023 年不受控制的再入 . . . . . . . . . . . . . . . . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... 44 2023 年发射的 19 颗 SSO 卫星,按降交点地方时排序 . . . . . . . . . 45 2023 年发射的 19 颗 SSO 卫星,按降交点地方时排序 . . . . . . . . 46 2023 年发射的 19 颗 SSO 卫星,按降交点地方时排序 . . . . . . . . 47 2023 年发射的 19 颗 SSO 卫星,按降交点地方时排序 . . . . . . . . 48 2023 年发射的 19 颗 SSO 卫星,按降交点地方时排序 . . . . . . . . 49 2023 年发射的 19 颗 SSO 卫星,按降交点地方时排序 . . . . . . . . . 50 2023 年发射的 19 颗 SSO 卫星,按降交点地方时排序 . . . . . . . . 51 2023 年发射的 19 颗 SSO 卫星,按降交点地方时排序 . . . . . . . . . 52 20 2023 年发射的地球静止卫星,按经度排序 . . . . . . . . . . . . . .53 21 GEO 数量 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .... .... .... .... 56
从这些经验中学到的经验教训导致了学生Cubesat计划的重新努力,以开发Astrojam。一个3U立方体,以改进为Wormsail设计的技术,展示了一个更正式的项目组织,并支持诺丁汉大学的实际研究。Astrojam拥有由UON ASTROPHARMACAY READIODS和NOTTINGHAM GEOSPATIAL INSTUTE(NGI)支持的学生开发的科学有效载荷。有效载荷包括一个小型荧光光谱仪,用于对无细胞生物培养子的原位分析产生模拟天体药物和基于立方体的GNSS干扰映射有效载荷。此外,与Brasília大学合作开发的相同的ADCS磁曲目将用于驱动和指向卫星。
数字波束形成技术消除了传统的天线有效载荷,实现了完全软件定义的多波束操作——这是市场上真正的游戏规则改变者(与 Teledyne E2V 合作)
• 鉴于其适度的有效载荷,A/R 无人机如果用于电磁战、持续 C2ISR 和其他利用其力量倍增潜力的非动能任务,则可能具有最大的战斗价值
在这一年中,有 11 次轨道发射失败。一般而言,我会给那些进入轨道但未能成功将有效载荷部署到目标轨道的发射打部分成功分数;2021 年就有两次这样的情况。那些勉强进入轨道或未进入轨道的发射被标记为“U”。今年,据报道,未经承认的中国轨道导弹试验完成了一次轨道飞行,但美国太空部队没有将其编入目录;它被指定为 2021U01。12 月 12 日的质子号飞行将其有效载荷送至比计划略低的高度和倾角更高的轨道。由于有效载荷将能够使用自己的推进剂到达目标轨道,因此在这种情况下,我将发射成功率评为 0.80。12 月 27 日的安加拉号飞行有一个 Persei(改进的 Blok DM 03)上级,它完成了首次燃烧到低停泊轨道,但未能进行进一步的计划燃烧以到达地球同步轨道;根据 https://planet4589.org/space/gcat/web/intro/success.html 上的规则,我给它打了 0.40 分。在这一年中,我将 2021F04 指定为 6 月 23 日可能发生的 Simorgh 发射失败。我决定从目录中删除此条目,因为我觉得发生这种情况的证据不足。