作为靶点驱动药物发现的替代方案,表型驱动方法通过分析表型特征来识别可抵消整体疾病影响的化合物。我们的研究为该领域引入了一种新方法,旨在扩大新治疗药物的搜索空间。我们介绍了 PDGrapher,这是一种受因果启发的图神经网络 (GNN),旨在预测能够逆转疾病影响的组合扰动因素(治疗靶点集)。与学习对扰动的反应的方法不同,PDGrapher 解决了逆问题,即推断实现特定反应所必需的扰动因素,即通过了解哪些扰动会引起期望的反应来直接预测扰动因素。通过编码基因调控网络或蛋白质-蛋白质相互作用,PDGrapher 可以预测看不见的化学或遗传扰动因素,有助于发现新药或治疗靶点。对九种具有化学扰动的细胞系进行的实验表明,PDGrapher 成功预测了多达 13.33% 的额外测试样本中的有效扰动剂,并将治疗目标的排名提高了多达 35%,并且该方法在十个遗传扰动数据集中表现出了竞争力。PDGrapher 的一项关键创新是其直接预测能力,这与传统上用于表型驱动药物发现的间接、计算密集型模型形成鲜明对比,这些模型只能预测由于扰动导致的表型变化。直接方法使 PDGrapher 的训练速度比 scGEN 和 CellOT 等方法快 25 倍,代表着效率的显著飞跃。我们的结果表明,PDGrapher 可以推进表型驱动的药物发现,提供一种快速而全面的方法来识别有治疗用途的扰动。
表型驱动的方法通过分析将患病与健康状态区分开的表型特征来鉴定遇到疾病的化合物。这些方法可以指导发现有针对性的扰动,包括小分子药物和遗传干预措施,这些扰动将疾病表型调节针对更健康状态。在这里,我们介绍了PDGRAPHER,这是一种因果启发的图形神经网络(GNN),旨在预测能够逆转疾病表型的能够逆转脑臂(一组治疗靶标)。与学习扰动如何改变表型的方法不同,Pdgrapher解决了直接预测实现所需响应所需的急性的信息问题。pdgrapher是一种将疾病细胞态嵌入基因调节或蛋白质 - 蛋白质相互作用网络中的GNN,学习了这些状态的潜在表示,并确定最佳的组合扰动,最有效地将患病的状态转移到该潜在的潜在水平内所需的身影状态。在具有化学性能的九种细胞系中的实验中,PDGRAPHER鉴定出比竞争方法高达13.33%的有效脑扰手,并获得了高达0.12的归一化折扣累积增益,以高达0.12个,以分类治疗靶标。它还在十个遗传扰动数据集上表现出竞争性能。PDGRAPHER的一个主要优势是其直接的预测范式,与传统上在表型驱动的研究中构成的间接和计算密集型模型相反。与现有方法相比,这种方法可加速训练高达25倍。pdgrapher提供了一种快速的方法,用于识别触觉扰动和推进表型驱动的药物发现。