摘要:基于从尼日利亚南部Ekiti State收集的可可豆废料样品的氧化石墨烯的合成和表征的研究。使用改良的悍马方法将原始的可可豆废料废物碳碳碳碳碳碳碳碳酸化进行了碳化和合成。使用X射线衍射(XRD)表征了原始的可可豆荚,石墨烯形式和获得的石墨烯氧化物;傅立叶变换红外光谱法(FT-IR)和扫描电子显微镜(SEM)。由原始可可粉(农业废物)产生的石墨粉的百分比为1.290 g,对应于21.5%的产率。可以从此推断出,无论百分比的百分比,它都与形成的石墨烯无关。SEM分析显示出发达的聚集生长,晶粒尺寸形成生可可可粉的显着增加到氧化石墨烯。对氧化石墨烯的FT-IR分析显示,在(1118.2 cm -1)的C-O-C处(3772.9 cm -1)在(3772.9 cm -1)上的可用性证实了氧化在氧化石烯后的存在。对于石墨烯而言,分配的峰分别位于(3205、1632、2117和1632 cm -1),分别与(OH,C = C,C = C和C-O)相对应。XRD分析显示宽范围扫描,氧化石墨烯峰封闭至2θ= 25和45°,表明碳的混乱性,而石墨烯XRD结果显示在(26.5),(30.4),(30.4),(32.6),(32.6)和(42.1)的四个峰。从结果中确定的是,可可豆pod废物具有产生高价值的吸附剂产品以减少环境污染的巨大潜在潜力。1。简介
单色光或进入特定周期性培养基的物质波显示出尖锐的bragg散射到特定的角度。然而,随机干扰完美的晶格位置会导致布拉格峰之间的弥散散射。随着分散体的增加,弥散散射最终占主导地位,最后,布拉格峰消失了。弥散散射是结构化的,在介质中揭示了相关性。例如,用于在水中X射线散射[1,2],可见光在单分散聚苯乙烯珠的无序堆积中的散射[3,4],这对相关函数具有宽峰,具有特征长度尺度,这又在结构函数中产生宽峰。在无序培养基的研究中,布拉格峰与周期性结构有关[5,6]。但是,没有预期的是,在任何规模上没有完美顺序的随机介质可以产生尖锐的散射角度,但我们在这里报告了这样的情况。对于我们选择的潜力,空间自相关函数具有宽峰,因为原子对相关函数在水中,但散射角度仍然非常清晰。这很令人震惊;下面定义的随机电势中的散射就像是在周期性电势中的布拉格散射,而不是相关液体中的散射。最接近的类似物(尽管不是完美的类似物)是粉末衍射,许多随机定向的微晶被密切包装。下面定义的电势没有这样的“微晶”,但它具有bragg峰。但是,散射的时间演变与Fermi的黄金法则不兼容,如下所述。我们通过检查电势的傅立叶成分来计算散射矩阵元素或等效地来解释这一惊喜。我们考虑以下形式的随机电势
摘要:企业用电计划不均衡导致峰值功率增加,从而导致电力供应成本增加。储能设备可以通过补偿计划的计划偏差来优化能源计划,并在参与需求响应时减少外部网络的消耗。然而,在一天中,可能会出现几个用电高峰,这会导致电池完全放电到其中一个峰值;结果,总峰值功耗不会下降。为了优化存储设备的运行,通常使用日前预测,这可以确定峰值的总数。然而,存储系统的功率可能不足以实现最佳峰值补偿。在本研究中,使用基于决策树模型中外生参数的长期功耗预测。基于预测,开发了一种用于确定特定消费者最佳存储容量的新算法,从而优化了平衡负载计划的成本。
瑞典间歇性力量的主要来源是风和太阳辐照度。它们的规划性是由天气变化引起的,这是电网变异性增加的一部分。随着瑞典这些来源的使用增加,有关储能的问题成为有关安全可靠的电网的辩论中的重要组成部分[4]。此外,瑞典的核淘汰,加上间歇性能源的扩展使瑞典的电力产量越来越不可预测。由于大多数生产所在的北部的传输能力有限,瑞典南部的电力短缺风险增加,也导致不确定性[5]。在瑞典,由于电加热,冬季的功耗峰值很高,随着消耗量的增加,电网的应变增加[6]。高负载峰的时间段和网格的容量短缺,结合间歇性能量产生,需要调节功率调节。在解决这个日益紧急问题的解决方案中的关键作用可能是储能系统[7]。
更大的电力系统提供更好的可靠性 更重要的是,在新兴时代,间歇性可再生能源(太阳能和风能)在发电结构中的份额不断增加 控制区域越广,根据日前估计对太阳能和风能资源发电变化采取日内缓解措施就越有效 通常,某个地区的太阳能发电在中午达到峰值,但该地区的负荷可能还没有达到峰值;因此,这些地区将有剩余电力出口到晚高峰已经开始的东部邻国 同样,拥有传统发电资源和低负荷的西部电力系统可以支持东部邻国的早高峰 控制区域越大,发电资源的多样性就越广泛 — — 水电、火电(煤炭和天然气)、核电、太阳能、风能等。水电和天然气电厂可以支持太阳能和风能发电的变化 印度电力系统是世界第三大电力系统,装机容量为 443 吉瓦,与许多其他地区的大型电力池相似
将宿主总体分为易感,感染和免疫等类别的隔室模型构成流行病学建模的主流。有效地,这种模型将感染和免疫视为二进制变量。我们构建了一个基于个体的随机模型,该模型将免疫视为连续变量,并结合了导致免疫力变化较小的因素。较小的免疫效应(SIE)包括其他感染的交叉免疫力,亚临床暴露的免疫力较小,并且在没有反复暴露的情况下缓慢衰减。The model makes qualitatively different epidemiological predictions, including repeated waves without the need for new variants, dwarf peaks (peak and decline of a wave much before reaching herd immunity threshold), symmetry in upward and downward slopes of a wave, endemic state, new surges after variable and unpredictable gaps, and new surges after vaccinating majority of the population.实际上,SIE模型提出了普遍观察到的矮人和对称峰和反复的潮流的替代原因,在Covid-19-19大流行期间观察到了特别好的原因。我们还建议可检验的预测,以区分重复波的替代原因。该模型进一步显示了可能具有协同作用和拮抗作用的不同干预措施的复杂相互作用。也表明,从长远来看,短期内有益的干预措施也可能是危险的。
图3:A:在280nm的粗反应混合物和两种反应的f disp中,归一化的HPLC曲线。b:原始数据HPLC曲线在400nm的粗反应混合物和两个反应中的F disp。c:这些HPLC剖面中两个主要峰的典型吸光光谱(保留时间为2.7和2.85分钟)。
本文报告了一项旨在为航站楼区域到达航班排序开发直观航线设计的研究。在引入航线结构以解决传统引导技术的缺点时,高密度环境中的主要挑战是保证在交通高峰期间有效使用这些航线,此时需要某种形式的路径延伸。该研究依赖于实验中心与巴黎戴高乐机场管制员进行的两组迭代小规模人在环模拟。它能够识别关键设计特征,包括与合并点的最小距离以及顺风和基准航线之间的角度。管制员反馈和初步分析表明,即使在高交通高峰下,最终的航线设计也可以促进排序,大大减少引导并使轨迹远离轴线区域。该研究还提供了基于距离演变的初步分析,可以重新用于评估新设计。下一步将是评估实际巴黎戴高乐机场环境中的适用性,这将需要对已确定的特征进行调整。