通过 my ( x,y,t ) = M y ( x,y,t ) – M y ( x,y ,0) 计算所有细胞的,其中 M y ( x,y ,0) 对应于基态。
单向量子中继器通过量子纠错码抵消丢失和操作错误,可以确保量子网络中快速可靠的量子比特传输。至关重要的是,这种中继器的资源需求(例如,每个中继器节点的量子比特数和量子纠错操作的复杂性)必须保持在最低水平,以便在不久的将来实现。为此,我们提出了一种单向量子中继器,它使用代码连接以资源高效的方式针对通信信道中的丢失和操作错误率。具体来说,我们将树簇代码视为内部容错代码,与外部 5 量子比特代码连接,以防止泡利错误。采用基于标志的稳定器测量,我们表明,通过散布每个专门用于抑制丢失或操作错误的中继器节点,可以以最小的资源开销连接长达 10,000 公里的洲际距离。我们的工作证明了定制的纠错码如何显著降低长距离量子通信的实验要求。
我们通过从具有稳定器表示的AME状态构建整个QMDS代码的全部QMDS代码来解决绝对最大纠缠(AME)状态和最大距离可分离(QMD)代码之间的关系。我们为AME状态的稳定器表示的发电机集引入了通用还原友好的形式,可以从中获得所有QMD的稳定器形式。我们的方法将用于相关的高维代码以及基于量子的代码。然后,我们将其与单向量子中继器的最佳代码联系起来,通过最大程度地降低短期基础设施成本以及此类量子中继器的长期运行成本。这将允许我们获得从AME父状态得出的最佳QMDS代码,该代码可用于此类量子中继器。
⚫ 2 通道、双向转换器,用于混合模式 I 2 C 应用中 SDA 和 SCL ⚫ 兼容 I 2 C 和 SMBus ⚫ 电压电平转换范围为 0.8V 至 5.5V 和 2.2V 至 5.5V ⚫ 端口 A 工作电源电压范围为 0.8V 至 5.5V(正常电平) ⚫ 端口 B 工作电源电压范围为 2.2V 至 5.5V(静态偏移电平) ⚫ 5V 容限 I 2 C 总线和使能引脚 ⚫ 0Hz 至 1000kHz 时钟频率(由于中继器增加的延迟,最大系统工作频率可能低于 1000kHz) ⚫ 以 V CCB 为参考的高电平有效中继器使能输入 ⚫ 漏极开路输入/输出 ⚫ 无锁存操作 ⚫ 支持跨中继器的仲裁和时钟延长 ⚫可适应标准模式、快速模式和快速模式 Plus I 2 C 总线设备、SMBus(标准和高功率模式)、PMBus 和多个主设备 ⚫ 断电高阻抗 I 2 C 总线引脚
• 首个为量子通信设立的私人量子光学实验室 • 印度首家利用 Quantum Advantage 的金融科技公司 • 量子通信领域超过 12 个 IP • 与印度理工学院海得拉巴分校签署通信中心谅解备忘录 • 与印度理工学院鲁尔基分校、印度理工学院坎普尔分校和印度理工学院达尔瓦德分校开展研究合作 • 与亚利桑那大学量子网络中心 (CQN) 签署谅解备忘录 • 35+ 量子科学家致力于量子创新
通过将逻辑Qubits编码为特定类型的光子图状态,人们可以实现Quanth-tum中继器,从而使快速的纠缠分布率接近经典连接。但是,这些光子图状态的产生需要使用基于线性光学器件的传统方法来启动的源头。克服了这一挑战,已经提出了许多新方案,这些方案采用量子发射器来终止生成光子图状态。尽管这些方案有可能显着降低资源成本,但缺乏不同编码和不同产生方案之间的中继器演奏的系统比较。在这里,我们基于两个不同的图状态,即树图状态和中继器图状态。对于两种状态,我们比较了两个生成方案之间的性能,一个基于与辅助物质量子位耦合的单个量子发射器,另一个基于一个基于单个量子发射器与延迟反馈相关的单个量子发射器。我们在不同的系统参数上识别数值最佳方案。我们的分析提供了有关基于图形状态的量子中继器的生成方案的定义的明确指南,并提出了对不同方案的实验实现实验实现的要求。
量子中继器为长距离量子通信和量子互联网铺平了道路,量子中继器的概念基于纠缠交换,这需要实现受控量子门。频繁测量量子系统会影响其动态,这被称为量子芝诺效应 (QZE)。除了减缓其演化之外,QZE 还可用于通过在测量之间引入一组精心设计的操作来控制量子系统的动态。在这里,我们提出了一种基于 QZE 的纠缠交换协议,该协议几乎实现了单位保真度。我们的协议的实施只需要简单的频繁阈值测量和单粒子旋转。我们将提出的纠缠交换协议扩展到一系列中继站,以构建量子芝诺中继器,无论中继器的数量如何,这些中继器也几乎实现了单位保真度。我们的提议不需要受控门,从而降低了量子中继器的量子电路复杂性。我们的工作有可能通过量子芝诺效应为长距离量子通信和量子计算做出贡献。
摘要 — 在量子中继器成熟之前,量子网络仍然局限于直接连接节点的有限区域或连接到公共节点的节点。我们通过使用安全经典中继器结合量子安全直接通信 (QSDC) 原理来构想量子网络,从而规避这一限制,量子安全直接通信是一种引人注目的量子通信形式,它直接通过量子信道传输信息。这一有前途的解决方案的最后一个组成部分是我们经典的抗量子算法。明确地说,在这些网络中,从抗量子算法中收集的密文使用 QSDC 沿节点传输,在节点处被读出,然后传输到下一个节点。在中继器处,信息受到我们的抗量子算法的保护,即使在量子计算机面前也是安全的。因此,我们的解决方案提供了整个网络的安全端到端通信,因为它能够在新兴的量子互联网中检测和预防窃听。它与运营网络兼容,并将享受流行互联网的引人注目的服务,包括身份验证。因此,它通过逐步演进升级,平滑了从传统互联网到量子互联网(Qinternet)的过渡。它将在未来充当量子计算网络中的替代网络。我们首次展示了由光纤和自由空间通信链路串联构成的基于安全经典中继器的混合量子网络的实验演示。总之,安全中继器网络确实可以使用现有技术构建,并继续支持通往未来量子计算机 Qinternet 的无缝演进路径。
龙桂璐就职于清华大学物理系和低维量子物理国家重点实验室,量子信息前沿科学中心,北京 100084,北京量子信息科学研究院,北京 100193。潘东就职于北京量子信息科学研究院,北京 100193,清华大学物理系和低维量子物理国家重点实验室,北京 100084。盛宇波就职于南京邮电大学电子与光学工程学院,南京 210003。薛其坤就职于清华大学低维量子物理国家重点实验室和物理系,量子信息前沿科学中心,北京 100084,北京量子信息科学研究院,北京 100193,南方科技大学,深圳 518055。陆建华就职于清华大学信息科学与技术学院,北京国家信息科学技术研究中心和量子信息前沿科学中心,北京 100084。Lajos Hanzo 就职于南安普顿大学电子与计算机科学学院,南安普顿 SO17 1BJ,英国。作者要感谢周增荣博士和魏世杰博士在量子抗性算法 LAC 中提供的帮助,并感谢与尹刘国教授的有益讨论。本研究部分由国家自然科学基金(批准号 11974205 和 11974189)、国家重点研发计划(批准号 2017YFA0303700)和广东省重点研发计划(批准号 2018B030325002)资助。L. Hanzo 谨感谢工程和物理科学研究委员会项目 EP/P034284/1 和 EP/P003990/1 (COALESCE) 以及欧洲研究委员会高级研究员基金 QuantCom(批准号 789028)的资金支持。