I. Ambato技术大学,健康科学学院,营养与饮食学生涯,Ambato,厄瓜多尔。 div>II。 div>Ambato技术大学,健康科学学院,营养与饮食学生涯,Ambato,厄瓜多尔。 div>
● 203 产权法 ● 251.5 公司金融(4 个学分) ● 255 风险投资金融(2 个学分) ● 256.9 担保交易(3 个学分) ● 270.65 能源项目开发与金融(3 个学分) ● 271.6 科学与监管政策(3 个学分) ● 275.3 知识产权法(4 个学分) ● 275.65 跨国知识产权法(3 个学分) ● 275.8 知识产权与创业(3 个学分) ● 277 专利法(3 个学分) ● HAAS 212 能源与环境市场(3 个学分)* ● HAAS 212B 能源与基础设施项目金融的法律与监管框架(1 个学分)* ● CIV ENG 107 气候变化缓解(3 个学分)* ● CIV ENG 292a 可持续社会技术(1 个学分)* ● ERG C200 能源与社会(4 个学分)* ● ERG C221 气候、能源与发展(3 个学分)* ● ERG C276 气候变化经济学(4 个学分)*
摘要 建筑业数字化带来诸多好处,但其在印度的广泛应用面临障碍。本研究旨在识别和分析阻碍印度建筑业采用数字化的关键障碍。该研究采用多阶段研究方法,包括文献综述以确定潜在障碍。随后,对印度建筑业的 162 名专业人士进行了问卷调查。调查显示,印度建筑业愿意接受数字化,并列举了诸如提高生产力和对建筑流程产生革命性影响等好处。大型组织表现出更大的积极性,而小型企业面临资源和知识方面的挑战,导致采用率较低。该研究确定了五个关键障碍主题,包括财务/资源限制、文化/组织限制、区域差异、数据安全/隐私问题以及意识/能力建设限制。这项研究的意义在于揭示关键障碍并为量身定制的干预措施提供见解,帮助利益相关者、政策制定者和研究人员驾驭印度建筑业不断发展的数字化格局。这项研究有助于探索印度建筑专业人士对印度建筑业尚未完全接受数字化的原因的看法。
在技术革命时代,需要进行实质性研究来评估辅助技术 (AT) 对有特殊需要儿童的教育需求的有效性。尽管已经进行了研究来检验将辅助技术整合到迎合 CWSN 的教学内容中的实用性。然而,在发展中国家,特别是在巴基斯坦,这仍然是一个较少探索的领域。此外,人们对在巴基斯坦使用 AT 的认识不足。本文讨论了如何利用辅助技术有效地教育 CWSN 并改变他们的生活。它还探讨了与其可访问性和可用性相关的挑战。采用案例研究设计,并与管理员、协调员和教师进行了半结构化访谈。访谈被转录并使用主题分析进行分析。研究结果表明,AT 不仅可以提高 CWSN 的生活质量,还可以促进他们的整体福祉。
自动武器的发展被描述为战争和核武器之后的第三次大革命,并将对所有人类产生深远的影响。,由于战场上的自主系统之间未经测试的相互作用的复杂性,他们引入了意外和快速冲突升级的风险。这加上机器或人类之间的潜在误解,构成了重大挑战。自动化加速战争的潜力可能会减少用于降级措施的时间。此外,优先考虑速度超过安全性,这引起了人们对自动武器的不可预测性和升级行为的担忧。
为了确保 Glendalough 4-6 年级学生获得一致、无缝的学习体验,我们要求使用 Windows 设备来执行 BYOD 计划。通过对 Windows 设备进行标准化,我们旨在创建更具凝聚力的课堂环境,促进更轻松的协作和教育资源的获取。
为了解决高光谱遥感数据处理中遇到的同构问题,提高高光谱遥感数据在岩性信息提取与分类的精度,以岩石为研究对象,引入反向传播神经网络(BPNN),对高光谱图像数据进行归一化处理后,以岩性光谱与空间信息为特征提取目标,构建基于深度学习的岩性信息提取模型,并使用具体实例数据分析模型的性能。结果表明:基于深度学习的岩性信息提取与分类模型总体精度为90.58%,Kappa系数为0.8676,能够准确区分岩体性质,与其他分析模型相比具有较好的性能。引入深度学习后,提出的BPNN模型与传统BPNN相比,识别精度提高了8.5%,Kappa系数提高了0.12。所提出的提取及分类模型可为高光谱岩矿分类提供一定的研究价值和实际意义。
合成微生物群落(Syncom)生物传感器是一种有前途的技术,用于检测和响应环境线索和靶分子。Syncom生物传感器使用工程的微生物来创建一个更复杂和多样化的传感系统,从而使它们能够以增强的灵敏度和准确性对刺激做出反应。在这里,我们给出了Syncom生物传感器的定义,超越了他们的建筑工作,并讨论了当前的生物传感技术。我们还强调了开发和优化Syncom生物传感器以及在农业和食品经营中的潜在应用,生物治疗发展,家庭感应,城市和环境监测以及One Health Foundation的挑战和未来。我们认为,Syncom生物传感器可以实时和遥控的方式使用,以感知不断动态的环境的混乱。
在此背景下,考虑到这些技术引发的数据保护问题,爱尔兰监管机构要求 EDPB 根据 GDPR 第 64(2) 条就一般适用事项发表意见。该请求涉及在人工智能(“AI”)模型的开发和部署阶段处理个人数据。该请求更详细地询问:(1)何时以及如何将 AI 模型视为“匿名”;(2)控制者如何证明合法利益作为开发和(3)部署阶段的法律依据的适当性;(4)在 AI 模型的开发阶段非法处理个人数据会对 AI 模型的后续处理或运行产生什么影响。