摘要。越来越多的传统塑料使用造成了一些大问题,从石油危机作为塑料生产的原材料以及地球上无法降解的塑料废物的积累。解决问题的有希望的措施之一是使用可再生材料制成的环保生物降解塑料。该项目的目的是表征来自香蕉皮的生物塑料的特性。该过程始于用盐酸从香蕉皮中提取果胶,然后添加水,caso 4,木薯淀粉,乙酸,甘油以形成塑料。果胶提取物的分析可赋予8.3%的果胶产量,29%的水含量,10%的灰分含量,4.9%的六氧基含量,50%的半乳糖醛酸含量和13.8%的酯化度。以下过程后获得的塑料的厚度为0.28 mm,吸水能力为53.8%,并且具有某些特征的生物降解。
每份含量 % 每日价值 L-赖氨酸 1,250mg + L-精氨酸 1,250mg + L-鸟氨酸 750mg + L-甘氨酸 500mg + 苹果果胶 405mg + L-亮氨酸 400mg + L-异亮氨酸 400mg + L-缬氨酸 400mg + L-谷氨酰胺 250mg + L-组氨酸 95mg + 专有益生菌混合物 20 亿 CFU + 成分:L-赖氨酸、L-精氨酸、L-鸟氨酸、L-甘氨酸、苹果果胶、L-亮氨酸、L-异亮氨酸、L-缬氨酸、L-谷氨酰胺、L-组氨酸、干乳酸杆菌、嗜酸乳杆菌、发酵产品、干双歧杆菌双歧杆菌发酵产品、干双歧杆菌乳酸菌发酵产品,干燥长双歧杆菌发酵产品。每日摄入量未确定
基于蛋白质的微纤维在生物工程和食品领域具有潜在的应用,但在微米级上保留和利用其蛋白质构件的独特纳米机械性能仍然是一项挑战。本研究通过同轴微流体纺丝果胶和 β-乳球蛋白在不同构象状态(单体、淀粉样蛋白原纤维、缩短的淀粉样蛋白原纤维,处于各向同性/向列相)下自下而上制造核壳纤维,在 CaCl 2 溶液中凝胶化。纤维直径范围为 478 至 855 μ m(湿态)和 107 – 135 μ m(干态)。它们显示出清晰的核壳横截面,但果胶-β-乳球蛋白单体纤维除外,据推测紧凑的蛋白质会扩散到果胶基质中。纤维构建块的分子取向表示为有序参数,代表果胶链和淀粉样蛋白原纤维平行于纤维轴的排列,该参数通过空间分辨率为 20 μ m 的同步加速器广角 X 射线散射 (WAXS) 计算得出。与纯果胶纤维相比,引入淀粉样蛋白原纤维作为蛋白质核心可使杨氏模量从 3.3 增加到 6.4 GPa,拉伸强度从 117 增加到 182 MPa。然而,将蛋白质核心流速从 1 mL/h 增加到 2 mL/h 会导致核心喷射螺旋弯曲、有序性降低,最终导致机械性能恶化。总体而言,与缩短的淀粉样蛋白原纤维相比,全长淀粉样蛋白原纤维对机械性能更有益。通过深入了解蛋白质构象、纺丝流速和由此产生的核壳微纤维的机械性能之间的关系,这些结果可能有助于新型纤维蛋白质材料领域。
成分:水,促红节醇,柠檬酸,酸,茶固体,抗坏血酸,柠檬酸,果胶,甜叶菊redaudiana叶提取物,自然风味,二α-α-α-乙酸酯,乙酸棕榈酸维生素A棕榈酸盐。咖啡因含量:35 mg / 20 fl oz < / div>
多糖(纤维素和半纤维素),蛋白质,酚类木质素和果胶的量和排列,部分构成植物组织,部分决定了其衰减速率。富含木质素和/或贫穷的组织已被描述为从生化的恢复,导致缓慢的衰减率。尽管有争议的有机物在具有矿物质颗粒的土壤中存储的机制,但在有机泥炭土壤(HASTOSOLS)中,生化顽固症仍然鲜为人知。为了研究泥炭植物在泥炭土中形成的作用,我们表征了10种物种的生化成分,并检查了三个泥炭地生态系统中土壤中成分的持久性至150 cm的深度。我们假设来自Hummock微型型物种的生化结构成分和内聚力比空心的物种更多。生化成分的相对比例在植物材料和泥炭土的前10厘米之间发生了明显变化,这表明分解发生在泥炭土壤表面,但此后生化成分的相对比例并没有明显地变化至150 cm深。在生化成分中有几种差异,这些成分区分了霍姆克物种与空心物种的最深深度采样。尽管期望木质素样成分的持久性,但可溶性和离子结合的果胶化合物的持久性令人惊讶,因为这些生物聚合物被认为很容易分解。我们的发现表明,除了经常引用的酚类木质素样成分外,泥炭,特定多糖和果胶的结构成分持续存在于泥炭土壤中,并且不应忽略泥炭型生态系统中的碳动态。
该项目着重于使用橙皮作为主要原料的环保生物塑料包装材料。随着全球对塑料污染的关注,尤其是在包装行业中,有很大的推动力推动了可持续替代方案。橙皮是一种通常被丢弃的农业副产品,富含果胶,纤维素和精油,使其成为生物塑料生产的有前途的候选人。这项研究旨在研究橙皮的潜力,以作为创建生物塑料的可生物降解和可持续资源。这项研究旨在通过使用一种经常被瓦斯特的农业副产品橙皮来开发一种对常规石油塑料的环保替代品,有助于降低环境中的塑料废物和污染。该研究的主要目标是确定从传统塑料转换为可生物降解的实用,环境负责的方法。尽管存在许多不同类型的生物塑料,但它们的成本,有效性和环境影响经常阻止其广泛使用。尽管纤维素和果胶含量很高的橙皮为生物塑料的发展提供了有希望的可再生资源,但其材料品质(例如强度,灵活性和生物降解性)必须用于包装和其他行业的实际应用。
1个麸质,乳制品,大豆,二氧化硫 - ,花生和坚果2果2水果含量以及最终计算可能会根据消费者需求3而根据果实下降而有所不同,使用非标准化的果胶饮食补充剂可以代替多种多样的饮食和平衡的饮食和健康的生活方式。建议的每日摄入不得超过。*益生菌一词的法律地位可能因国家de111®而有所不同,这是Deerland益生菌与酶的商标。
收到日期:2022-01-20/修订接受日期:2022-01-31/发表日期:2022-02-01 摘要 本综述主要关注由植物(淀粉、纤维素、果胶)、动物(壳聚糖、明胶)和微生物(右旋糖酐)制成的纳米颗粒药物输送系统。在此,重点关注生物聚合物及其衍生物的物理化学性质及其在癌症治疗中的作用机制。基于纳米颗粒的药物输送系统通过以下方式提高疗效:增加易损药物和蛋白质的半衰期,提高疏水性药物的溶解度,并允许在患病部位控制和靶向释放药物。在所有提到的生物聚合物中,只有右旋糖酐和纯果胶是有问题的。一些临床研究表明,右旋糖酐会引起意想不到的副作用,例如血小板减少和肝毒性,而纯果胶基材料则具有不良的膨胀和腐蚀特性。阿霉素被广泛用作治疗多种类型的乳腺癌、肺癌、结肠癌、卵巢癌、前列腺癌和膀胱癌实体瘤的有效化疗剂,因此几乎与所有这些生物聚合物联合使用。 关键词:壳聚糖、淀粉、生物聚合物、药物输送系统、癌症治疗 引言 癌症是继心血管疾病之后全球第二大死亡原因 [1]。为了克服与癌症治疗相关的挑战,人们投入了大量的研究精力来利用纳米技术的有益特性。目前,近 25% 的主要药物化合物及其衍生物都来自天然资源。目前正在筛选天然化合物来治疗几种主要疾病,包括癌症、
中国樱桃(Prunus pseudocerasus)是中国主要的核果作物之一,具有十分重要的意义。然而,由于缺乏高质量的基因组资源,人工改良其性状和遗传分析具有挑战性,这主要归因于难以解析其四倍体和高度杂合的基因组。在此,我们使用 PacBio HiFi、Oxford Nanopore 和 Hi-C 组装了品种‘诸暨短柄饼’的染色体水平、单倍型解析基因组,包含 993.69 Mb,组装成 32 条假染色体。单倍型内比较分析揭示了广泛的基因组内序列和表达一致性。系统发育和比较基因组分析表明,P. pseudocerasus 是一个稳定的同源四倍体物种,与野生的 P. pusilliflora 密切相关,两者大约在 1834 万年前分化。与其他李属植物类似,樱桃也经历了一次常见的全基因组复制事件,该事件发生在大约 1.3996 亿年前。由于果实硬度低,樱桃不适合长距离运输,从而限制了其在中国的快速发展。在成熟果实阶段,樱桃品种‘诸暨短柄梨’的硬度明显低于樱桃品种‘黑珍珠’。硬度的差异归因于果胶、纤维素和半纤维素含量变化的程度。此外,比较转录组分析发现了两个参与果胶生物合成的基因 GalAK-like 和 Stv1,这可能是造成‘诸暨短柄梨’和‘黑珍珠’果实硬度差异的原因。PpsGalAK-like 和 PpsStv1 的瞬时转化会增加原果胶含量,从而提高果实硬度。我们的研究为中国樱桃功能基因组学研究和重要园艺性状的提升奠定了坚实的基础。
