(Å) 旋转 Pristine 52776 ± 0.24 90.00 ± 3.4 540 ± 5.14 旋转 1% DMSO 15098 ± 0.26 4.92 ± 4.8 168 ± 2.10 旋转 3% DMSO 11700 ± 0.13 200.00 ± 0.02 10000 ± 8.1 旋转 5% DMSO 7500 ± 0.03 12.00 ± 1.7 12 ± 0.03 喷雾 Pristine 100000 ± 596 9.00 ± 3.2 810 ± 8.3 喷雾 1% DMSO 29117 ± 754 4.46 ± 4.1 3416 ± 6.47 喷雾 3% DMSO 22788 ± 459 82.00 ± 1.59 9102 ± 4.89 喷雾 5% DMSO 15000 ± 0.03 50.00 ± 0.01 750 ± 0.01
材料必须在表现出低的导热率的同时结合高塞贝克系和电导率。3广泛认可了常规无机半导体材料(例如BI 2 SB 3,BI 2 TE 3和PBTE)的进步。2,3与它们的无机柜台相比,进行聚合物有望在废热收集中使用时出色的优势,可享有丰富的可及性,丰富的可用性,成本效益,轻度和固有的低导热率。4 - 6聚(3,4-乙二醇乙烯噻吩):聚(苯甲酸苯甲酸酯)(PEDOT:PSS)是一种导电聚合物,在TE应用中具有有希望的利用特征。这种可商购的聚合物表现出显着的优势,例如水的差异性,良好性,高透明度和易于加工性。7 - 9这些特征有助于其在热电学中的可行材料。但是,应注意,与以前的研究相比,该特定聚合物表现出的TE性能显着降低。10,11
I.引入电子组件的发展,例如Schottky二极管,MOS,晶体管和金属分离的半导体,GAN通常使用(MIS)。et cetera。[1-3]。氮化壳是一种非常有前途的材料,用于具有高强度,高频率和宽频率和高电子速度饱和的半导体材料。氮化岩二进制化合物是一种半导体直接带隙,其晶格参数=4.52Å,Eg = 3.22 eV,属于III-V家族的300 K [4]。此二进制化合物(LED),光电探测器(MSM),激光二极管,太阳能电池施加和现场效应微波晶体管[5-9]是光发射二极管中的有前途的材料。gan的高频特性使其适用于高频和高功率应用。[10,11]。已经对Schottky二极管设备生产的许多理论和实验研究进行了研究(Metal-GAN)。项目已经研究了在不同频率下1 kHz-1 MHz范围内Au / Nio / Gan Schottky二极管的电子参数和频率依赖性。
摘要:在本文中,我们研究了由PEDOT:PSS/石墨烯组成的复合材料的潜在应用,该复合材料通过喷雾涂层沉积在柔性底物上,作为一种自动导电膜,用于在可穿戴生物传感器设备中应用。PEDOT:PSS/石墨烯的稳定性通过电化学障碍光谱(EIS),环状伏安法(CV)和线性极化(LP)进行评估,而在人造汗液电解质中暴露于人造汗液中,而扫描电子显微镜(SEM)则用于调查以下这些层中的文学变化。结果表明,层在-0.3至0.7 V相比Ag/agCl的电势范围内表现出主要的电容性行为,截止频率约为1 kHz,在500个周期后保持90%的容量。在暴露于空气中的衰老6个月仅导致阻抗的略有增加,这表明在不需要的条件下存储潜力。然而,对人造汗液的长时间暴露(> 48 h)会导致明显的降解,从而导致阻抗增加超过1个数量级。观察到的降解引发了这些层在可穿戴生物传感器应用中的长期生存能力的重要考虑因素,从而促使在长时间使用过程中需要采取其他保护措施。这些发现有助于持续的努力,以增强医疗保健和生物技术应用中生物传感器的稳定性和可靠性。
压力传感器在可穿戴电子设备和电子皮肤中充当核心组件时,已经获得了更广泛的市场。为了实现高性能柔性压力传感器,研究人员对传感器材料,结构和设备设计进行了创新研究。聚(3,4-乙二醇二噻吩):聚苯乙烯磺酸盐(PEDOT:PSS)是一种广泛使用的导电聚合物,由于其异常电导率,易于处理,易于处理和生物相容性,因此引起了相当大的关注。作为一种多功能且灵活的功能,PEDOT:PSS可以将其发展为各种形式,对新兴的传感应用具有重要意义。本文概述了使用PEDOT:PSS的最新进步:用于灵活的压电传感器的PSS,同时还讨论了其在此类传感器中的应用以及用于提高其性能的方法和机制。
(Å) 旋转 Pristine 52776 ± 0.24 90.00 ± 3.4 540 ± 5.14 旋转 1% DMSO 15098 ± 0.26 4.92 ± 4.8 168 ± 2.10 旋转 3% DMSO 11700 ± 0.13 200.00 ± 0.02 10000 ± 8.1 旋转 5% DMSO 7500 ± 0.03 12.00 ± 1.7 12 ± 0.03 喷雾 Pristine 100000 ± 596 9.00 ± 3.2 810 ± 8.3 喷雾 1% DMSO 29117 ± 754 4.46 ± 4.1 3416 ± 6.47 喷雾 3% DMSO 22788 ± 459 82.00 ± 1.59 9102 ± 4.89 喷雾 5% DMSO 15000 ± 0.03 50.00 ± 0.01 750 ± 0.01
其中,S 为塞贝克系数,σ 为电导率,κ 为热导率,T 为绝对温度。ZT 用于比较热导率不同材料的热电性能。而功率因数(PF = S2σ)则比较热导率相近材料的热电效率。[1–7] 目前,Bi 2 Te 3 、PbTe 和 SiGe 等无机化合物占据热电市场主导地位。[8–12] 然而,这些化合物的使用存在若干缺点,例如毒性、原材料稀缺、成本高和不可持续。因此,人们对寻找可替代的可持续、高度丰富、低成本和无毒的材料有着浓厚的兴趣。有机半导体(例如:导电聚合物、碳质材料和纳米复合材料)由于其优越的性能(例如可用性、低热导率、易于化学改性和大规模生产)而提供了一种新兴的替代方案。通过掺杂 PEDOT 来提高导电聚合物的热电性能,可使 ZT 值达到 0.2–0.4。[13] 碳纳米结构,特别是碳纳米管 (CNT) 在通过以下方法制备的多层系统中表现出优异的热电行为
摘要:本研究详细介绍了基于石墨烯的冰探测系统的开发和验证,旨在通过监视飞机表面上的冰的积累来增强飞行安全性。该系统使用石墨烯电极采用半导体聚合物(PEDOT:PSS),解释电阻变化以实时检测水撞击和冰的形成。在各种温度和气流条件下,在风洞中对传感器的性能进行了严格的测试,重点是电阻信号依赖于空气温度和相位变化。结果证明了传感器将水滴影响与冰的形成区分开的能力,其电阻信号幅度与水滴的影响之间有着显着的相关性,从而导致冰积聚。进一步的分析显示了空气温度与电阻信号振幅之间的显着关系,尤其是在有益于冰形成的较低温度下。这强调了传感器在各种大气条件下的精度。该系统的紧凑设计和准确的检测突出了其改善飞机冰监测的潜力,为通往强大可靠的冰探测系统提供了一条路径。
摘要:源自工业,农业和城市来源的酚类化合物可以渗入流水,对水生生物,生物多样性以及损害饮用水质量的不利影响,对人类构成潜在的健康危害。因此,监测和减轻流水中酚类化合物的存在对于保护生态系统的影响和保护公共卫生至关重要。这项研究探讨了基于用石墨烯(GPH)(GPH),Poly(3,4-乙基二苯乙烯)(PEDOT)(PEDOT)和酪氨酸酶(TY)修饰的屏幕打印电极(SPE)的创新传感器的开发和性能,设计用于水分析,专注于制造过程和所获得的耗载结果。拟议的生物传感器(SPE/GPH/PEDOT/TY)旨在达到高度的精度和灵敏度,并允许有效的分析回收率。特别注意修改元素组成的制造过程和优化。这项研究强调了生物传感器作为水分析的有效且可靠的解决方案的潜力。用石墨烯,PEDOT聚合物的合成和电聚合沉积和酪氨酸酶固定的修饰有助于获得高性能和稳健的生物传感器,从而提出了监测水生环境质量的有希望的观点。生物传感器的灵敏度增强,可促进河水样品中的检测和定量。分析恢复也是一个重要方面,生物传感器提出一致且可重复的结果。关于电分析实验结果,使用该生物传感器获得的检测极限(LOD)对于所有酚类化合物(8.63×10-10-10-10-10 m for Catechol,7.72×10-10 m均为3-甲氧基毒素的7.72×10-10 m,对于4-甲基氧气的3--氧化氧气和9.56×10 m的能力,可用于4-甲基元素的均匀分数,适合4-甲基元素的特征,均匀均匀跟踪复合参数。此功能可显着提高生物传感器在实际应用中的可靠性和实用性,使其适合监测工业或河水。
摘要:电色素的低功耗使其广泛用于主动阴影窗户和镜子,而柔性版本可用于可穿戴设备。最初的可拉伸电致元元素的初始演示有望与复杂表面的良好相符。在这里,完全集成的本质上可拉伸的电致色素设备被证明为单个元素和3×3显示器。导电和电离离子液含量的聚(3,4-乙二醇二苯乙烯)聚苯乙烯磺酸盐磺酸盐与聚(乙烯基醇)的电解质结合在一起,形成完整的细胞。显示出15%的传输变化,而不透明的反射设备的反射率变化为25%,即使在30%的应变下,转换时间也<7 s。在电化学和机械应变循环下均具有稳定性。一个被动矩阵显示器在应变下表现出可寻址性和低串扰。可比的光学性能与柔性电色素和更高的可变形性提供了可穿戴,生物识别监测和机器人皮肤设备的有吸引力的品质。关键字:电致色素,可拉伸,PEDOT,显示,导电聚合物,离子皮肤,电子皮肤